
 1

 

SERGUEI V. ULYANOV –SERGUEI A. PANFILOV 

LUDMILA LITVINTSEVA – SERGUEI S. ULYANOV  
 

 
UNDER THE SCIENTIFIC SUPERVISION OF: 

MASAHITO SUZUKI 

GIOVANNI DEGLI ANTONI 
KAZUKI TAKAHASHI 

 

 

QQUUAANNTTUUMM  IINNFFOORRMMAATTIIOONN  AANNDD  
QQUUAANNTTUUMM  CCOOMMPPUUTTAATTIIOONNAALL  

IINNTTEELLLLIIGGEENNCCEE::    
DDYYNNAAMMIICC  EEVVOOLLUUTTIIOONN  OOFF  IINNFFOORRMMAATTIIOONN  
FFLLOOWW  AANNDD  IINNTTEELLLLIIGGEENNCCEE  OOFF  QQUUAANNTTUUMM  

AALLGGOORRIITTHHMMSS 
 

Encoder
f→F ; F→UF

f

INPUT

UF

Quantum Block

Basis

Vectors
DecoderAnswer

OUTPUT

Binary strings

level

Complex

Hilbert space

Map Table and

Interpretation Spaces  

Yamaha Motor Europe N. V. R&D Office, 
Università degli Studi di Milano – Polo Didattico e di Ricerca di Crema 

 
Via Bramante, 65 – 26013 CREMA (CR), Italy – 2005 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acknowledgements 
 
The authors would like to acknowledge Dr. M. Suzuki, Dr. K. Takahashi and Dr. T. Hagiwara 
(Yamaha Motor Co., Ltd.) for general support and supervision, and Professor G. Degli Antoni 
(Milan University) for fruitful discussion about general ideas and possible applications of quantum 
computing.  
One of the authors (S.V.U.) would also like to express his gratitude to his “classical and non-
standard logic”, “probabilistic and information-theoretical”, “relativistic”, “thermodynamics” and 
“quantum” friends, especially; Professors L. Zadeh, R. Aliev, M. Jamshidi, A.N. Melikhov, D. 
Mundici, R.L. Stratonovich, A.N. Kolmogorov, M.S. Pinsker, R.L. Dobrushin, V.A. Fock, B.N. 
Petrov, I.I. Goldenblat, V.P. Belavkin, L.B. Levitin, Y.I. Samoilenko, P. Shor, P. Knight, A.S. 
Holevo, O. Hirota and C. Bennett for kind support and discussions.  



 3

 

CONTENTS 
CONTENTS ...................................................................................................................................................................... 3 
PREFACE ......................................................................................................................................................................... 5 
CHAPTER 1: BACKGROUND OF QUANTUM COMPUTATION AND QUANTUM ALGORITHMS.............. 8 

1.1. INTRODUCTION: COMPUTATIONAL AND INFORMATIONAL COMPLEXITY OF QA SIMULATION .................................. 9 
1.1.1. Quantum algorithm simulation and design techniques. .................................................................................. 9 

1.2. SPATIO-TEMPORAL COMPLEXITY OF QA SIMULATION BASED ON THE FULL MATRIX APPROACH ........................... 11 
1.2.1. Spatio-temporal complexity of Grover’s quantum algorithm........................................................................ 11 
1.2.2.  Information analysis of quantum complexity of QAs: Quantum Query Tree Complexity. ........................... 18 
1.2.3. Kolmogorov complexity of quantum query algorithms. ................................................................................ 21 

CHAPTER 2: CLASSIFICATION AND GENERAL STRUCTURE OF QA GATES............................................ 24 
2.1. CLASSIFICATION AND GENERAL STRUCTURE OF QA’S ........................................................................................... 24 

2.1.1. On the classification of QA’s: Design strategies of classical algorithms and quantum computation........... 24 
2.1.2. General structure of QA’s. ............................................................................................................................ 26 
2.1.3. The full basis and universal gates with control parameters for quantum computing.................................... 29 
2.1.4. Computational conditions of approximate accuracy for classical efficient simulation of bases quantum 
circuits..................................................................................................................................................................... 33 
2.1.5. Conservative logic and universal gates......................................................................................................... 35 
2.1.6. Universal gates for quantum algorithms and fault–tolerant computations................................................... 37 
2.1.7. Fault-tolerant universal gates. ...................................................................................................................... 39 
2.1.8. Mutually unbiased computational bases. ...................................................................................................... 40 
2.1.9. Main QAG’s and main quantum operators. .................................................................................................. 47 

2.2. INFORMATION ANALYSIS AXIOMS OF QAG-DYNAMIC EVOLUTION ........................................................................ 48 
2.2.1. Information (communication) capacity of quantum computing and axioms of information analysis of 
dynamic evolution of QA's quantum gates. ............................................................................................................. 49 
2.2.2. Information intelligent measure of QA’s (principle 5). ................................................................................. 51 

2.3. CLASSICAL EFFICIENT SIMULATION OF QUANTUM FORMULAS BY BOOLEAN CIRCUITS: COMPUTATIONAL AND 
DESIGN COMPLEXITY .................................................................................................................................................... 51 

2.3.1. Interrelations between Quantum Turing Machine and QA’s definitions....................................................... 51 
2.3.2. Classical efficient simulation of quantum formulas by Boolean circuits: Computational and design 
complexity. .............................................................................................................................................................. 53 
2.3.3. Equivalent definition for quantum formulas.................................................................................................. 58 
2.3.4. Quantum formulas vs. Boolean circuits. ....................................................................................................... 61 
2.3.5. Quantum query algorithms and computational complexity........................................................................... 63 

CHAPTER 3: SIMULATION OF QA’S BY CLASSICAL COMPUTATION ........................................................ 69 
3.1. QUANTUM COMPUTATION ON CLASSICAL COMPUTER ............................................................................................ 69 

3.1.1. The role of entanglement in computational process...................................................................................... 71 
3.2. GENERALIZED DESIGN METHOD OF QA’S GATES.................................................................................................... 83 

3.2.1. The generic circuit. ....................................................................................................................................... 84 
3.3. UNIVERSALITY OF ENTANGLEMENT AND QUANTUM COMPUTATION COMPLEXITY USING EFFICIENT CLASSICAL 
SIMULATION ................................................................................................................................................................. 89 

CHAPTER 4: INFORMATION ANALYSIS AND INTELLIGENT MEASURE OF QA’S: MINIMIZING 
SHANNON INFORMATION AND VON NEUMANN ENTROPY AS A TERMINATION CRITERION.......... 98 

4.1. ABOUT INFORMATION QUANTITIES ........................................................................................................................ 98 
4.2. INFORMATION ANALYSIS AND INTELLIGENT MEASURES OF THE QA .................................................................... 101 

4.2.1. Information analysis of Deutsch algorithm................................................................................................. 102 
4.2.2. Information analysis of QG dynamics and intelligent output states: Deutsch-Jozsa algorithm.................. 104 
4.2.3. Information analysis of Shor’s QA: The information role of entanglement and interference in Shor’s QA 
gate........................................................................................................................................................................ 114 
4.2.4. Information-theoretical analysis of Grover’s QSA. .................................................................................... 124 

4.3. THE STEP-BY-STEP NATURAL MAJORIZATION PRINCIPLE IN QAS SIMULATION AND QA-TERMINATION PROBLEM 
SOLUTION BASED ON PRINCIPLE OF SHANNON/VON NEUMANN MINIMUM ENTROPY ................................................... 128 

4.3.1. Majorization theory and its relation to QAs................................................................................................ 128 
4.3.2. Simulation results of QA-termination problem solution based on principle of Shannon/von Neumann 
minimum entropy................................................................................................................................................... 134 



 4 

REFERENCES ............................................................................................................................................................. 139 
TEXTBOOKS ON QUANTUM COMPUTING...................................................................................................................... 139 
RELATED REFERENCES ............................................................................................................................................... 139 

APPENDIX 1: MAIN OPERATIONS OF QUANTUM COMPUTING AND INFORMATION CONTENT OF 
QUANTUM OPERATORS............................................................................................................................................ 144 

A1.1. MAIN QUANTUM OPERATORS AND QUANTUM GATES ........................................................................................ 144 
A1.2. UNITARY OPERATION TRANSFORMATIONS OF QUBITS AND QUANTUM ALGORITHM GATES. .............................. 152 

A1.2.1. Computational and measurement basis states, Quantum evolution of two qubits, and Walsh-Hadamard 
transform applications. ......................................................................................................................................... 152 
A1.2.2. Examples of Walsh-Hadamard transform applications in quantum algorithm computation.................... 157 
A1.2.3. An information analysis of quantum systems. ........................................................................................... 164 
A1.2.4. Entanglement in the dynamic behavior of a two-qubit register. ............................................................... 173 

APPENDIX 2: MAIN PROPERTIES OF QUANTUM INFORMATION AND ENTROPY AMOUNTS........... 180 
A2.1. SOME BASIC FACTS ABOUT QM SYSTEMS. ....................................................................................................... 180 

A2.1.1. The partial Trace. ..................................................................................................................................... 180 
A2.1.2. Classical Shannon Entropy Definition...................................................................................................... 181 
A2.1.3. Relationship Formulas for the Shannon Entropy...................................................................................... 181 
A2.1.4. Von Neumann Entropy Definition............................................................................................................. 182 
A2.1.5. Conversion Formulas for the Von Neumann Entropy............................................................................... 182 

A2.2. SOME PROPERTIES OF VON NEUMANN ENTROPY FOR QUBIT ENSEMBLES: CASE STUDY................................... 185 
A2.3. ANALYSIS AND SUMMARY OF CASES I, II, AND III. ........................................................................................... 187 

A2.3.1. Case I. (Classical) Independent Qubits: ( ) 2 & ( ) 1 ( )S AB S A S B= = = .......................................... 187 
A2.3.2. Case II. (Classical) Correlated Qubits: ( ) 1& ( ) 1 ( )S AB S A S B= = = ............................................ 188 
A2.3.3. Case III. (Nonclassical-Purely QM) Entangled (Supercorrelated) Qubits: 

( ) 1& ( ) 1 ( )S AB S A S B= = = ....................................................................................................................... 188 

APPENDIX 3: THE CONTROLLED NOT GATE AND LOGICAL CALCULATIONS..................................... 192 
APPENDIX 4: NUMBER THEORY DEFINITIONS ............................................................................................... 198 

AIM............................................................................................................................................................................ 198 
A4.1. CONGRUENCES ............................................................................................................................................ 198 
A4. 2. NUMBER THEORY FROM AN ALGEBRIC VIEWPOINT......................................................................... 199 

APPENDIX 5: ALGORITHMIC AND COMPUTATIONAL COMPLEXITY ..................................................... 205 
BRIEF INTRODUCTION IN THE THEORY OF COMPLEXITY........................................................................... 205 
A5.1. THE COMPLEXITY (C) OF DETERMINISTIC ALGORITHMS.................................................................. 205 
A5.2. THE COMPLEXITY OF NONDETERMINISTIC (RANDOM) ALGORITHMS.......................................... 206 
A5.3. THE SYMBOLS ( ) ( ) ( ) ( ) ( )ffffofO ΘΩ∞ ,,,, ω  IN COMPUTATIONAL COMPLEXITY................. 206 
A5.4. ALGORITHMIC KOLMOGOROV (K(X)) COMPLEXITY OF SYMBOLIC REPRESENTATION AND 
INFORMATION SHANNON ENTROPY ................................................................................................................ 207 
A5.5. COMPUTATIONAL COMPLEXITY ............................................................................................................. 209 

APPENDIX 6: VECTOR, INNER, OUTER  AND TENSOR PRODUCT.............................................................. 216 
A6.1. VECTOR PRODUCT.................................................................................................................................. 216 
A6.2. INNER PRODUCT...................................................................................................................................... 217 
A6.3. OUTER PRODUCT .................................................................................................................................... 217 
A6.4. TENSORS AND TENSOR PRODUCT ...................................................................................................... 218 

APPENDIX 7: NOTIONS AND DEFINITIONS OF PAULI AND CLIFFORD GROUPS .................................. 221 
A7.1. INTRODUCTION............................................................................................................................................ 221 
A7.2. PAULI MATRICES ......................................................................................................................................... 221 



 5

  

Preface 
 
Many of the most popular models of quantum computation are direct quantum generalizations of 
well known classical constructs. This includes quantum Turing machine, gate arrays and walks. 
These models use unitary evolution as the basic mechanism of information processing and only at 
the end do we make measurements, converting quantum information into classical information in 
order to read out classical answer. In the more familiar gate array model computational steps are 
unitary operations, developing a large entangled state prior to some final measurements for the 
output.  Just two ideas from quantum computing (and some algorithmic ingenuity) are considered. 
The first of two ideas is amplitude amplification. The second idea is that any classical (either 
deterministic or probabilistic) computation can be simulated on a quantum computer. More 
precisely, (i) in the circuit a classical model, a classical circuit with N gates can be simulated by a 
quantum circuit with ( )O N gates; (ii) if the query model (when only the number of queries is 
counted), a classical computation with queries can be simulated by a quantum computation with N  
queries.  
Thus, this greatly simplifies description of quantum algorithms. Instead of describing a quantum 
algorithm, we can describe a classical algorithm that succeeds with some small probabilityε . Then, 
we can transform the classical algorithm to a quantum algorithm and apply the amplitude 
amplification to the quantum algorithm. The result is a quantum algorithm with the running time or 
the number of queries that is times the one for the classical algorithm with which we started. A 
similar reasoning can be applied, if instead of a purely classical algorithm, we started with a 
classical algorithm that involves quantum subroutines. Such algorithms can also be transformed into 
quantum algorithms with the same complexity.  
Another approach in quantum computing consists in the formalism of the measurement based 
quantum computation. In this case we start with a given fixed entangled state of many qubits and 
perform computation by applying a sequence of measurements to designated qubits in designated 
bases. The choice of basis for later measurement may depend on earlier measurement outcomes and 
the final result of the computation is determined from the classical data of all the measurement 
outcomes. In contrast to unitary evolution, measurements are irreversibly destructive, involving 
much loss of potential information about a quantum state’s identity. Thus it is interesting, and at 
first sight surprising, that we can perform universal quantum computation using only measurements 
as computation steps. Two principle schemes of measurement based computation are teleportation 
quantum computation and so-called cluster model of one-way quantum computer. From another 
standpoint, the appeal of hidden-variable theories is that they provide one possible solution to the 
measurement problem. For example, even if an observer were placed in coherent superposition, that 
observer would still have a sequence of definite experiences, and the probability of any such 
sequence could be calculated. For this case, hidden-variable theory is simply a way to convert a 
unitary matrix that maps one quantum state to another into a stochastic matrix that maps the initial 
probability distribution to the final one in some fixed basis. A hidden-variable theory can be based 
on networks flows: if we would examine the entire history of a hidden variable, then we could 
efficiently solve problems that are believed to be intractable even for quantum computers. By 
sampling histories, one could, for example, search an unordered database of N  items for a single 

“marked item” using only 
1
3O N

 
 
 

database queries. By comparison, Grover’s quantum search 

algorithm requires 
1
2N

 
θ 
 

 queries, while classical algorithms require ( )Nθ queries.  
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Remark. The readers unfamiliar with asymptotic notation, ( )( )O f N means “at most order ( )f N ,” 

( )( )f NΩ means “at least order ( )f N ,” and ( )( )f Nθ  means “exactly order ( )f N ” (in details, 
see Appendix 5). 
The results are surprising is that, given a hidden variable, the distribution over its possible values at 
any single time is governed by standard quantum mechanics and is therefore efficiently samplable 
on a quantum computer. So if examining the variable’s history confers any extra computation 
power, then it can only be because of correlations between the variable’s values at different times.  
Quantum computation explores the possibilities of applying quantum mechanics to computer 
science. If built, quantum computers would provide speed-ups over conventional computers for a 
variety of problems. The two most famous results in this area are Shor’s quantum algorithms for 
factoring and finding discrete logarithms and Grover’s quantum search algorithm show that 
quantum computers can solve certain computation problems significantly faster than any classical 
computers. Shor’s and Grover’s algorithms have been followed by a lot of other results. Each of 
these algorithms has been generalized and applied to several other problems. New algorithms and 
new algorithmic paradigms (such as adiabatic computing which is the quantum counterpart of 
simulated annealing) have been discovered. We can explore several aspects adiabatic quantum-
computational model and use a way that directly maps any arbitrary circuit in the standard 
quantum-computing model to an adiabatic algorithm of the same depth. 
Many quantum algorithms are developed for the so-called oracle model in which the input is give as 
an oracle so that the only knowledge we can gain about the input is in asking queries to the oracle. 
As our measure of complexity, we use the query complexity. The query complexity of an algorithm 
A  computing a function F is the number of queries used by A . The query complexity of F is the 
minimum query complexity of any algorithm computing F . We are interested in proving lower 
bounds of the query complexity of specific functions and consider methods of computing such 
lower bounds. The two most successful methods for proving lower bounds on quantum 
computations are following: the adversary method and the polynomial method. An alternative 
measure of complexity would be to use the time (temporal) complexity which counts the number of 
basic operations used by an algorithm. The temporal complexity is always at least as large as the 
query complexity since each query takes one unit step, and thus a lower bound on the query 
complexity is also a lower bound on the temporal complexity. For most existing quantum 
algorithms the temporal complexity is within poly-logarithmic factors of the query complexity.  
One barrier to better understanding of the quantum query model is the lack of simple mathematical 
representations of quantum computations. While classical query complexity (both deterministic and 
randomized) has a natural intuitive description in terms of decision trees, there is no such easy 
description of quantum query complexity. The main difference between the classical and quantum 
case is that classical computations branch into non-interacting sub computations (as represented by 
the tree) while in quantum computations, because of the possibility of destructive interference 
between sub-computations, there is no obvious analog of branching. The bounded-error model is 
both relevant to understanding powerful explicit non-query quantum algorithms (such as Shor’s 
factoring algorithm) and theoretically important as the quantum analogue of the classical decision 
tree model. We are interested in studying classical and quantum complexities because an oracle 
sometimes gives a separation between them. For example, it was showed one problem where we 
need an exponentially many queries in the bounded error classical case, but only a single query is 
needed in the quantum case. Another occasion to study a query complexity is when a temporal 
complexity is hard. In such case, the number of queries we make gives a lower bound for the 
temporal complexity. In fact, currently there is no lower bound method for quantum temporal 
complexity that gives super-linear bounding, and by studying quantum query complexity, we get 
lower bounds heuristic on quantum temporal complexity.  
 One of the powers of quantum computation comes from the fact that we can query in superposition. 
That is, if we are given a set of n  elements from 1 to n , we can query an oracle in parallel once to 
obtain a superposition of ( )1f through ( )f n . However, we can in a sense only learn one of 
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the ( )f i ’s from such a query. The real power of quantum computation comes from interference. 

That is, the information in the state, e.g., ( )f i ’s, can be combined by means of unitary quantum 
gates in non-trivial way, and we can extract a global property of the input. 
Lectures, presented in this manuscript were given in by Prof. S.V. Ulyanov and Prof. L.V. 
Litvintseva in period from 1975 to 2005 during their stay as professor staff in Moscow State 
Institute of Radiotechnics, Electronics and Automatics (State Technical University, Moscow, 
Russia), University of Electro-Communications (Chofu, Tokyo, Japan), University of Montana 
(USA), and in Polo didattico e di Ricerca di Crema (Milano University, Department of Information 
Technologies, Crema, Italy). 
In present manuscript of Lecture Notes we are concentrate our attention on the description of the 
efficient simulation and design methodology of quantum algorithm gates using classical computer 
technology. 


