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Preface

Many of the most popular models of quantum computation are direct quantum generalizations
of well known classical constructs. This includes quantum Turing machine, gate arrays and
walks. These models use unitary evolution as the basic mechanism of information processing
and only at the end do we make measurements, converting quantum information into classical
information in order to read out classical answer. In the more familiar gate array model
computational steps are unitary operations, developing a large entangled state prior to some
final measurements for the output. Just two ideas from quantum computing (and some
algorithmic ingenuity) are considered. The first of two ideas is amplitude amplification. The
second idea is that any classical (either deterministic or probabilistic) computation can be
simulated on a quantum computer. More precisely, (i) in the circuit a classical model, a

classical circuit with N gates can be simulated by a quantum circuit with O(N ) gates; (ii) if

the query model (when only the number of queries is counted), a classical computation with
queries can be simulated by a quantum computation with N queries.

Thus, this greatly simplifies description of quantum algorithms. Instead of describing a
quantum algorithm, we can describe a classical algorithm that succeeds with some small
probability £ . Then, we can transform the classical algorithm to a quantum algorithm and
apply the amplitude amplification to the quantum algorithm. The result is a quantum
algorithm with the running time or the number of queries that is times the one for the classical
algorithm with which we started. A similar reasoning can be applied, if instead of a purely
classical algorithm, we started with a classical algorithm that involves quantum subroutines.
Such algorithms can also be transformed into quantum algorithms with the same complexity.
Another approach in quantum computing consists in the formalism of the measurement based
quantum computation. In this case we start with a given fixed entangled state of many qubits
and perform computation by applying a sequence of measurements to designated qubits in
designated bases. The choice of basis for later measurement may depend on earlier
measurement outcomes and the final result of the computation is determined from the
classical data of all the measurement outcomes. In contrast to unitary evolution,
measurements are irreversibly destructive, involving much loss of potential information about
a quantum state’s identity. Thus it is interesting, and at first sight surprising, that we can
perform universal quantum computation using only measurements as computation steps. Two
principle schemes of measurement based computation are teleportation quantum computation
and so-called cluster model of one-way quantum computer. From another standpoint, the
appeal of hidden-variable theories is that they provide one possible solution to the
measurement problem. For example, even if an observer were placed in coherent
superposition, that observer would still have a sequence of definite experiences, and the
probability of any such sequence could be calculated. For this case, hidden-variable theory is
simply a way to convert a unitary matrix that maps one quantum state to another into a
stochastic matrix that maps the initial probability distribution to the final one in some fixed
basis. A hidden-variable theory can be based on networks flows: if we would examine the
entire history of a hidden variable, then we could efficiently solve problems that are believed
to be intractable even for quantum computers. By sampling histories, one could, for example,
search an unordered database of N items for a single “marked item” using only

1
O(N 3] database queries. By comparison, Grover’s quantum search algorithm requires

1
Q(N ZJ queries, while classical algorithms require B(N ) queries.



Remark. The readers unfamiliar with asymptotic notation, 0( f (N ))means “at most order
f(N),” Q(f(N)) means “at least order f(N),” and e(f(N)) means “exactly order
/(N)” (in details, see Appendix 5).

The results are surprising is that, given a hidden variable, the distribution over its possible
values at any single time is governed by standard quantum mechanics and is therefore
efficiently samplable on a quantum computer. So if examining the variable’s history confers
any extra computation power, then it can only be because of correlations between the
variable’s values at different times.

Quantum computation explores the possibilities of applying quantum mechanics to computer
science. If built, quantum computers would provide speed-ups over conventional computers
for a variety of problems. The two most famous results in this area are Shor’s quantum
algorithms for factoring and finding discrete logarithms and Grover’s quantum search
algorithm show that quantum computers can solve certain computation problems significantly
faster than any classical computers. Shor’s and Grover’s algorithms have been followed by a
lot of other results. Each of these algorithms has been generalized and applied to several other
problems. New algorithms and new algorithmic paradigms (such as adiabatic computing
which is the quantum counterpart of simulated annealing) have been discovered. We can
explore several aspects adiabatic quantum-computational model and use a way that directly
maps any arbitrary circuit in the standard quantum-computing model to an adiabatic algorithm
of the same depth.

Many quantum algorithms are developed for the so-called oracle model in which the input is
give as an oracle so that the only knowledge we can gain about the input is in asking queries
to the oracle. As our measure of complexity, we use the query complexity. The query
complexity of an algorithm A computing a function F is the number of queries used by A4 .
The query complexity of F is the minimum query complexity of any algorithm computing F .
We are interested in proving lower bounds of the query complexity of specific functions and
consider methods of computing such lower bounds. The two most successful methods for
proving lower bounds on quantum computations are following: the adversary method and the
polynomial method. An alternative measure of complexity would be to use the time
(temporal) complexity which counts the number of basic operations used by an algorithm.
The temporal complexity is always at least as large as the query complexity since each query
takes one unit step, and thus a lower bound on the query complexity is also a lower bound on
the temporal complexity. For most existing quantum algorithms the temporal complexity is
within poly-logarithmic factors of the query complexity.

One barrier to better understanding of the quantum query model is the lack of simple
mathematical representations of quantum computations. While classical query complexity
(both deterministic and randomized) has a natural intuitive description in terms of decision
trees, there is no such easy description of quantum query complexity. The main difference
between the classical and quantum case is that classical computations branch into non-
interacting sub computations (as represented by the tree) while in quantum computations,
because of the possibility of destructive interference between sub-computations, there is no
obvious analog of branching. The bounded-error model is both relevant to understanding
powerful explicit non-query quantum algorithms (such as Shor’s factoring algorithm) and
theoretically important as the quantum analogue of the classical decision tree model. We are
interested in studying classical and quantum complexities because an oracle sometimes gives
a separation between them. For example, it was showed one problem where we need an
exponentially many queries in the bounded error classical case, but only a single query is
needed in the quantum case. Another occasion to study a query complexity is when a
temporal complexity is hard. In such case, the number of queries we make gives a lower
bound for the temporal complexity. In fact, currently there is no lower bound method for



quantum temporal complexity that gives super-linear bounding, and by studying quantum
query complexity, we get lower bounds heuristic on quantum temporal complexity.

One of the powers of quantum computation comes from the fact that we can query in
superposition. That is, if we are given a set of n elements from 1 ton, we can query an oracle

in parallel once to obtain a superposition of f° (1) through f (n) However, we can in a sense
only learn one of the f (z) ’s from such a query. The real power of quantum computation

comes from interference. That is, the information in the state, e.g., f (i ) ’s, can be combined

by means of unitary quantum gates in non-trivial way, and we can extract a global property of
the input.

In Table A we present results of different approaches for solution of the partial problems of
QA simulation.

Table A: Effectiveness of different approaches of QA simulation

Approaches Hardware implementation Maximum gqubit humber ULl reqz:;;mz::s UeDiLD
Based on decomposed parallel Sun Enterprise 4500, 8
computations 400Mhz processors, 10GE 25+1 395,81
{Miwa, Matsumoto and Imai, 2002) mermory, 64 bit 05
Software approach based on matrix )
concatenation PV 1.?Gh§ét1laebb' CIRES 2241 44 6
{Hsu, 2002)
QuIDD" based approach Dual AthlonhP 1.2GHz,1GB, 1941 <
(guant_ph/0208003) C++
Hardware approach (YMC-5T, 2001) Analog circuit &) <]
Hardware approach (YMC-5T,2002) ALl c:lrcsglﬁgr;ace e g =<1, on the way
Software approach with operator
pEnatrices H FIll, 800MHZ, §12MB, Matlat, 1141 1500
Yyindows 2000
(vhAC,2000)
Software approach with vectorized Pl 1GHz 512ME Matiab
algorithms ! o ' ' 23+1 a0
(YMC,2002) Yyindows 2000

1 — yIDD — Quantum Information Decision Diiagratn

The core of any QA is a set of unitary quantum operators or quantum gates. In practical
representation quantum gate is a unitary matrix with particular structure. The size of this
matrix grows exponentially with the number of inputs, making it impossible to simulate QAs
with more than 30-35 inputs on classical computer with von Neumann architecture.

In this patent we present four practical approaches to design fast algorithms to simulate most
of known QAs on classical computers:

1. Matrix based approach;

2. Algorithmic based approach, when matrix elements are calculated on “demand”;



3. Problem-oriented approach, where we succeeded to run Grover’s algorithm with up
to 64 and more qubits with Shannon entropy calculation (up to 1024 without

termination condition);

4.  Quantum algorithms with reduced number of operators.

The first approach is based on the direct representation of the quantum operators. This
approach is more stable and precise, but as a drawback it requires allocation of operator’s
matrices in the computer’s memory. Since size of the operators grows exponentially,
practically this approach is applicative for simulation of QAs with small number of input
qubits (no more than 11 on PC). Using this approach it is relatively simple to simulate
excitations on QA, and to perform fidelity analysis.

The second approach, we call it also fast quantum algorithm simulation, is more advantageous.
It doesn’t require the allocation of operator matrices in PC memory, but it calculates each
component when it is required. In this case the number of inputs with this approach has two
bounds: (i) The first bound is due to exponential grows of operations required to calculate the
result of the matrix product; and (ii) The second bound is that state vector is still must be
allocated in computer memory.

Using this approach it is possible to simulate up to 19 qubits on PC and even more on a
system with vector architecture [Imai et all, 2002]. In, this and other approaches are described.
Further more, due to particularities of the memory addressing and access processes in the PC,
when number of qubits is relatively small, this approach is faster than approach with direct
matrix allocation. The main difficulty of this approach is a requirement of the advanced study
of the quantum operators, and of their structure. Also with this approach it is more difficult to
simulate external excitations and to perform fidelity analysis of the simulated algorithm.

The third is a problem-oriented approach is a result of the advanced study of the concrete QA
structure and state vector behavior. For example in Grove’s QSA, the state vector always has
only two different values: (i) one value corresponds to the probability amplitude of the
answer; and (ii) the second one corresponds to the probability amplitude of the rest of the
state vector. Using this assumption it is possible to apply the algorithm only to these two
numbers, and simulate its behavior. In this case the only limit is a representation of the
floating-point numbers, necessary to simulate actual values of the probability amplitudes.
Remark. Note that after superposition operation, these probability amplitudes are very small

(2%/). We succeeded to run Grover’s QSA with this approach simulating 1024 qubits without

termination condition calculation and up to 64 qubits with termination condition estimation
based on Shannon entropy.

For other QAs maximum number of input qubits will be smaller, since probability amplitudes
have more complicated distribution. Also introduction of an external excitation will decrease
the possible number of qubits to the same range with second approach.

The fourth approach is applicable to the control QAs, where in one embodiment,
entanglement and interference operators could by bypassed (or simplified), and result is
computed based only on superposition of the initial states (and deconstructive interference of
final output patterns) representing the state of the designed schedule of control gains.

Another example is a particular case of Deutsch-Jozsa’s and Simon algorithms when
entanglement is absent by using of pseudo-pure quantum states.

Since acceleration of the QA calculation is a very important computer science problem, first
part of this patent is dedicated to comparative analysis of the temporal complexity of the
known QAs.

The second part is dedicated to the introduction of the generalized approach in QA simulation
and to algorithmic representation of quantum operators.



The third part is dedicated to structure representation of the QAs applicable to low level
programming on classical computer (PC).

The forth part is a generalization of the approaches and introduction of the general QA
simulation tool based on fast problem-oriented QAs.

The fifth part is an introduction to quantum control algorithm.

The sixth part is a general comparison of the developed approaches in QA simulation.

Figure P1 summarizes the known approaches to QA design and simulation. The high level
structure of the quantum algorithms can be represented as a combination of different
superposition entanglement and interference operators. Then depending on algorithm, one can
choose corresponding model and algorithm structure for simulation. Depending on the current
problem, one can choose (if available) one of the simulation approaches, and depending on
approach one can simulate different orders of quantum systems.

QA-Gate

@ Input » |(Sup) (Ent) (Int) » Output (Result)

A 4 h 4 A 4 A 4 A 4
Algorithm representation for simulation

! ! v v
Matrix Algorithmic Problem oriented Problem oriented
@ based representation with full state with compressed
vector allocation vector allocation
) v } }
Deutsch-Jozsa Deutsch-Jozsa Deutsch-Lozsa Grover
Grover Grover Grover
Shor Shor
Simon Simon
¥ ] v ) 4
12 qubits” 12-13 qubits’ 28 qubits” 1024 qubits™
! ' ! v
102 sec 10°sec ~0Osec ~0sec

* - limited by spatio-temporal complexity, number of qubits includes measurement and calculation basis;
** - Limited by floating numbers point representation

Figure P1: Different approaches for QA simulation.

Lectures, presented in this manuscript were given in by Prof. S.V. Ulyanov and Prof. L.V.
Litvintseva in period from 1975 to 2005 during their stay as professor staff in Moscow State
Institute of Radiotechnics, Electronics and Automatics (State Technical University, Moscow,
Russia), University of Electro-Communications (Chofu, Tokyo, Japan), University of
Montana (USA), and in Polo didattico e di Ricerca di Crema (Milano University, Department
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In present manuscript of Lecture Notes we are concentrate our attention on the description of
the classically efficient simulation of QAG based on fast quantum algorithms. Software and
hardware implementations of the developed fast quantum algorithms are described



