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The probabilistic description and analysis of the response of time-invariant nonlinear
dynamic systems driven by stochastic processes is usually treated by means of
evaluation of statistical moments and cumulants of the response. The background of
these methods is the Fokker—Planck-Kolmogorov (FPK) equation for a probability
density function or the Pugachev equation for a characteristic function, respectively.
The exact solutions of these equations are obtained only for isolated cases. For
engineering probabilistic analysis of a complex nonlinear systems, different mixed
(hybrid) methods in these cases are used. In this study a ‘benchmark’ solution is
obtained on the basis of the FPK equation in conjunction with the method of statistical
moments for nonlinear mechanical system with colored parametric excitations. In Part
1 (this part), an exact solution of FPK equation on the basis of asymptotic analysis of
nonlinear dynamic behavior of parametric excitation system is discussed. In Parts 2
and 3, applications of this method to stochasticity and stability analysis of nonlinear
time-variant systems are considered. A comparison with the accuracy of different
statistical methods is discussed. In Parts 4 and 5, a method of stochastic analysis of
relativistic and quantum dynamic systems is described on the basis of a generalized
stochastic Hamilton—Jacobi equations on a differential manifold as Riemanian
geometry. This involves the task of relativistic navigation and dissipative quantum
models of a nonlinear parametric oscillator in the presence of stochastic excitations on
a differential manifold with different metric tensors of the space--time continuum.
© 1998 Elsevier Science Limited.

1 INTRODUCTION

The stochastic theory of Markov processes explains many
phenomena where fluctuations play a significant role.!
The classical theory of probability and stochastic processes
provides powerful tools for the description of classical com-
plex dynamic systems. In accordance with their wide range
of applicability, there exist various powerful solution meth-
ods for Markov processes based either on the global char-
acterization of the probability evolution by the Onsanger—
Machlup path integral or on its local equivalent, the
Fokker—Planck—Kolmogorov (FPK) equation.*> In this
context, the variables of the system under study are
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considered as random variables, the time evolution of
which is represented by a stochastic process. The FPK
equation is the basic evolution equation for a great
number of physical and engineering problems. Examples
of the former are the small noise expansion and the adiabatic
elimination procedure of fast random variables; examples of
the latter are the eigenfunction expansion and the continued-
fraction method applied to periodically driven systems.'

This paper, consisting of five parts, deals with two types
of nonlinear dynamic systems: one with time-invariant char-
acteristics subjected to parametric excitations; the other
with time-variant characteristics. Random change in
characteristics is considered as: (1) a stochastic event that
does not depend on information about phase coordinates of
the dynamic system; and (2) a function of phase coordinates
of the dynamic system. A time-invariant dynamic system
is obtained as a special case in which a change in
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characteristics has a zero probability for one random realiz-
ation of motion. Therefore, both types of dynamic systems
can be analyzed by common mathematical tools of statisti-
cal analysis of parametric systems.

The probabilistic description and analysis of the response
of time-invariant nonlinear dynamic systems driven by
stochastic processes is usually treated by means of the
evaluation of statistical moments and cumulants of the
response. The background of these methods is the FPK
equation for a probability density function or the Pugachev
equation for a characteristic function, respectively. The
exact solutions of these equations are obtained only for a
separate cases,!”1”

For engineering probabilistic analysis of complex non-
linear systems, different mixed (hybrid) methods in these
cases are used.”®!*"28 In this study, a ‘benchmark’ solution
is obtained on the basis of the FPK equation in conjunction
with the method of statistical moments for nonlinear
mechanical system with colored parametric excitations. In
Part 1, an exact solution of the FPK equation on the basis of
asymptotic analysis of nonlinear dynamic behavior of para-
metric excitation system is discussed. In Appendix A, dif-
ferent methods for solving the FPK equation are described.
In Parts 2 and 3, applications of this method to stochasticity
and stability analysis of nonlinear time-variant systems are
considered. In Parts 4 and 5, generalized statistical analysis
of quantum and relativistic dynamic systems on a stochastic
differential manifold with different metric tensors (as
Riemanian and Finsler stochastic geometry of space—time
continuum) is carried out on the basis of generalized
stochastic Hamilton—Jacobi equations and tensor models
of stochastic parallel displacement. A concrete example of
stochastic analysis is given as relativistic navigation in the
space—time continuum with different metric tensors and
damping quantum models of a nonlinear parametric oscil-
lator in present of stochastic excitations are examined.

The models of FPK equations and its applications can be
considered from three viewpoints: (1) mathematical model-
ing of random processes based on Chapman-Kolmogorov
equation and solutions of FPK equations; (2) stochastic
models of classical (Newton, Lagrange and Hamilton—
Jacobi formalisms), relativistic (Einstein) and quantum
(nonrelativistic and relativistic) Nelson’s mechanics; and
(3) stochastic optimal control of dynamic systems.

In this paper, we consider in detail the second problem
based on a stochastic Hamilton—Jacobi equations in differ-
ent space—time continuums.?*° Interrelations with the first
and third problems in Parts 4 and 5 are discussed in detail.
Here we only discuss the main problems of these viewpoints
and interrelations with the FPK equations that are used in
this paper.

2 THE MODELS OF FPK EQUATIONS IN
STOCHASTIC MECHANICS

(1) From the mathematical viewpoint, several generic
Markov processes are studied when extended to complex

measure.’’ For the Markov process, X(t), an indexed
family of complex measure is best defined by the con-
ditional structure F,(x, tlxy, fg,...,%s )= PriX(H=
XXty =x9, ..., X@)=x,}, o=<t,< ...t,<t and F,
(x, tlxg, tg, ....x,) = Fa(x, tlx,, t,) or for the probability den-
sity function f,(x, tlxg, o, ... X 1) =fo(x, tlx,, 1,). If we
denote by F(x, ¢) the probability Pr{X(1)<x} or
fx,)=Pr{x = x(f) = x + dx}, then we have the
Chapman-Kolmogorov relationship:

folx, tlxg, t0) = Jﬁ(x, tlx’, Y0, 1 xg, 1) dx',
Vi' € (1, 1) (n
and
flx, )= sz(x, tx', o, ) dx', VY <t 2)

Now we put in some constants:

a,(z, ) = I(x —2)'fo(xlz,4) dz (3)

and for ¢y, = 0 (assume time homogeneity) from eqn (1) we
may write

folxlxg, £+ Ay = jfz(xlz, A (zlxg, t) dz 4)

Assume that a,/A has a nonzero limit forn = 1, 2:

. ay(z,4) (2, A)

A(z, )= lim — A i
@0 Al_r.l(l) A

Now use the Chapman—Kolmogorov relationship from eqn
(4) and integrating by parts, we obtain:

» Bz, )= lim &)

af
J—at—w(x)dx
—J‘ i[A Vo(Zlxg, £ 18 B |
=z (2 (Zixg, )] — 5527[ @z ant)]}
X () dz (6)

where ¢(x) is a smooth function that tends to zero suf-
ficiently as x — = . Since this holds for V¢, we have
FPK equation:

flxlxg, ) 9
FEES = — (el DA 0]
Lo
+ 5 amalfaelxo, 0BG )] @
If we assume in FPK eqn (7) that in B(x) = — (ih)/m, then

we can use the standard transformation:
1 "X
frlxlxo, 1) exp{ -3 JOA(OJ) d0} =¥,(xlxg, 1) (3

in which case the FPK eqn (7) reduces to

P ZTCI 0 SR S 2]

ot 2m o2 + V(x, Y (xlxy, 1)

)
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where

dA ih (" 0A®,D
V(x’t)zg(A(x))zamE_E 0 fat

This is the Schrodinger equation.

dé (10)

Remark 1. We may write eqn (4) in a more generalized

form as:*!

1.l/(JC2,12)=J‘Nz(JCz,tzl)fl,ll)l//(xhtl)d'\fl (1

If take 1, = t; + € (¢ is small) and choose

L2 . 2
N, = %exp{ %(x—z-;:ﬁ-)——} exp{ %eV((iz_;—x'), t) },

172
A= (2"”'8) , sz dr, =1 (12)
m
then we have
a B oy
dv__nov 1
o= " omae TV (13

In this case, N, is a genuine complex probability measure
and also satisfies an identical equation if we apply this to
eqn (1). Eqns (9) and (13) are identical.

These equations, which will be subsumed under the name
‘FPK equation’, typically have the form:
16°Dy(x) G,

P, 1) :
AN _cpeyy=c| 22202 iy | Pxt
o P = e o, ()| Px. 1)

(14)

and are to be solved with some initial condition P(x, 0).
Here, a summation over indices is always implied, if not
stated otherwise; L is the FPK operator defined by eqn (14),
x" = (x,....x,), and the number ¢ defines the problem
under study:'® for complex ¢ = i, h = 1 eqn (14) is a
Schrédinger equation and for ¢ = 1 it is a FPK or Bloch-
type equation. The general solution of eqn (14) can be
derived in many different ways. One is the probabilistic
representation of solutions by virtue of the well-known
Feinman—Kac formula by using path-integral methods.>*'"?
The other is an eigenmode expansion.'>'* In first case, the
solutions thus obtained are, unfortunately, formal and are
very difficult for engineering applications. In the second
case, the differential operator in the FPK equation is not,
in general, self-adjoint, and makes the formalism of varia-
tional schemes (such as Rayleigh—Ritz) more complicated:
eigenvalues are not real, nor are the right and left eigen-
functions equal. In Ref."®, the schemes of two types were
considered. In the first type, a Hermitian operator is con-
structed from the (non-Hermitian) FPK operator, and one
then proceeds as a variational calculation in quantum
mechanics. The second type is based on a soluble approxi-
mation of the FPK operator and the pertubation theory
based there on. This situation gives rise to many simulating
opportunities for the development of approximate proce-
dures to analyze such equations. Several numerical tech-
niques exist in the literature for the analysis of nonlinear

problems. Widley used procedures on basis-set (cumulant)
expansion, path-integral techniques, iterative time-
dependent propagation schemes, stochastic computer simu-
lation, and moment expansion. Each of them has its own
advantages when applied to the nonlinear FPK equation.
This problem is discussed in detail in Refs 51015,

Remark 2. The focus of this remark is on one of the
most debated problems in the field of stochastic
dynamic system theory: the derivation of the best FPK
equation for colored-noise-driven stochastic dynamic
system.3‘5'”"2’32'39 The problem is to derive an FPK-
type evolution equation for the probability density function
of the process described by means of substituting a linear
combination of uncorrelated colored noise for correlated
colored noise:

1 1
2=Gx)+ g x)p(t) +g" (X)q(t); p = — P+ oa®
(15)

where x = (xy, x5, ..., x;) and G(x), g(x) are nonlinear func-
tions; the superscripts ‘c’ and ‘w’ denote, respectively, the
functional coefficients of the colored and white fluctua-
tions. In this case the fluctuations g(¢f) are §-correlated in
time, {g;(t)q;(t')) = 2D, 8;6(r — ¢') with intensity D,,. The
fluctuations p(f) are colored and are assumed to have an
exponential correlation function, (pi(t)pj(t’))z (DIT)
8exp{ —lt—£'lir} —2D,6,6(t — t') as 7 — 0, where D
is the noise strength and 7 is the noise correlation time. If
the driving noise is Gaussian and é-function correlated, the
process in eqn (15) is Markovian and described by FPK
equation (an equation for the probability density of x which
is local in time and space). If the noise has finite correlation
time, process x becomes a non-Markovian and its evolution
equation is in general nonlocal both in time and space.
Recently, Fulinski and Telejko®®> have investigate the
system driven by colored additive and multiplicative
white noises and have shown that the presence of correla-
tion between the noises changes the dynamics of the
system. The stochastic dynamics of a system such as
eqn  (15) driven by d-correlated  ({g(t)q;(t')=
2/Dad(t — 1), {gngt'h=2adt—1), {g:()g,(t"))=
2D6(t —1'y) and colored ({g(r)p(t'))=N\/(QD)/It exp
(=lt=r'lr), {gOq’)=Dir exp (—lt—t'll1), g¥=
1, (p(p(t")) = Qfr exp(— lt —'1/7)) noise in Refs*>3®
was studied. The simultaneous consideration of additive
and multiplicative correlated white noises can induce®® a
very large suppression (or with an anticorrelation the oppo-
site effect of a large enhancement) of the forward transition
rate in bistable systems.

(2) The stochastic mechanics formalism can be illus-
trated as follows in the simple case of a classical dynamic
system*? defined by the Lagrangian:

40,41

L(x, %)= %mx,-x[ —U(x) (16)

with U(x) time-independent. An exact ground-state wave
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function yo(x, ) can be parametrized as:

[iEgt + w(x)] }

Yolx, ) = cxp{ & 17)

with w(x) a real function and satisfying the Riccati equation

h 2
L( i ()) ma—w(x)+E0-U(x) (18)

2m ax,

Quantum dynamics formulated at imaginary time s = if and
according to eqn (18), the Schodinger equation becomes:

L) =5 2¢(x 9= 1|50 mote ))2
- (%g—wm) +E0] Y, 5) (19)
Setting now: l
x5 1) = plxs) exp{ - @5;“’—("”} (20)

it follows that eqn (19) takes the form

h o ) 1/ 9
SP(X )_ _a zp( > ) aX I: 2m<_w(x))p(xs S)]
(21)

which is just an FPK equation. The function p(x,s) can be
regarded as the probability density of a classical stochastic
diffusion process with diffusion constant h/2m and drift
velocity (-Vw(x)/m). In this case, quantum dynamics at
imaginary time is equivalent to a certain classical diffusion
process with conserved particle number. This process can
alternatively be described by Langevin equation:

h 172
+ (—) 7:(5) (22)
x=£(s) "

where  n(s) = {;()},<;<y is a Gaussian white
noise defined by the probability measure u[y(s)]=
n(s) exp( — 1/2 f_+ » ds 1,(5)n;(s)).The generalized Langevin
quantization of a classical dynamic system defined by dis-
sipative Lagrangian:

a 1 o
%&i(s)—v - ﬁa_x,»“’(x)

1
L(x, x, 1) = imxixi + Qi(x, )x; - U(x, 1) (23)

rests upon the Langevin equation

——E ()= — l(—S(x 5)+ tQ(x))

x=Ks)
h' 172
+(2) ne 4
controlled by S(x, s), where S(x, 5) denotes an arbitrary

integral of the imaginary-time Hamilton—Jacobi equation
associated with Lagrangian eqn (23):

2
iS(x, s)+ i(-iS(x, s) + iQ(x, s)) —Ux,H)=0
as 2m\ 9dx;
(25)

Accordingly, the imaginary-time Schrédinger equation cor-
responding to the Lagrangian eqn (23) is real and can be
written as:

d h & 9,
a’ﬁ(x) = (Et@ - O_x,-lﬂ(x’ S)) ¥(x, )

1[h /o, 1 2
+ E[ﬁ(a_x,-m(x’ s)) - Eﬂi(x’ ) —=Ux, 1)

X Y(x,5)=0 (26)

Manifestly, eqn (26) can be viewed as the FPK equation for
a classical stochastic diffusion process with diffusion con-
stant fi/2m and drift velocity ( — ViQ(x, s)/m). Therefore,
the FPK description of the diffusion process in question
yields the usual (Schrédinger) formulation of quantum
dynamics as s = ir.

Suppose {{/(x, 1); 0 < ¢ < T} is a never-vanishing solution
of the Schrodinger equation:

W _moy i
= zmae VOV @n

then S, (x, ) =1/i log Y(x, 1) satisfies
as, 1 ih
——q =1 = — _—
5 TH=0; H=2VS,VS, + V() ~ A8,  (28)

This is the Hamilton—Jacobi equation of stochastic
mechanics. If p(x) = ly(x, 7)1, then there exist Markov
diffusion process {g(?); 0 = r = T} with the quantum drift
given by v,(q(t).1) = UUmVS,(q(1),1). Letting:

Y(x, 1) =exp [R(x, N+ 1%S(x, t)] (29)

we see® that process g has the current velocity v (¢(?), 1) =
l/m VS4(q(#),1) and the osmotic velocity u(g(r), 1) = (Wm)V
R(q(1), 1). It is, namely, the Nelson process associated to the
solution {Y(x, 1); 0 = ¢ < T} of the Schrédinger equation.
The Nelson process ¢(f) and the momentum process p(t) =
VS, ((x (1).1), associated to a particular solution of the
Hamilton-Jacobi eqn (28) satisfy**4>4* the equations:

dq() = V,H(q(2), p(1)) dt + dw,
dp(r) = — V,H(q(1), p(1)) + D(g(1), 1) dw (30)

wherc the 3 X 3 matrix D has as its (ij) entry di(g®),n) =
(8 M(8x;0x;)8,(g(1), 1). Eqn (30) has the form of Hamilton’s
canonical equations with a random perturbation.?%-30:40:43.44

For the following generalized stochastic Hamilton—
Jacobi equation:*043

d,S(x) = |c(x, 1) + —le LOP | dr+ Z K (t,x) dw]
ji=1
€)))]
where wi is an m-dimensional Brownian motion on
accordingly probability space and we can write a stochastic
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Schrodinger equation corresponding to egn (31) as:®

hdy(x)= [— %hZAle +c(x DY (x) | dt

m
¥ D K (t,x) oW, 32)
j=1
where aw’,' is the Stratonovich stochastic differential.

The structures of stochastic Hamiltonian mechanics in
Refs.*®*14 was studied in detail. Generalized stochastic
relativistic mechanics in Refs**~>° was discussed. In Part 4,
a model of stochastic relativistic Hamilton—Jacobi equation
as background for quantum and relativistic diffusion pro-
cesses is considered.

The models of the stochastic Schrodinger eqn (32) was
developed in Refs 45!~ for optimal control processes with
nondemolition measurement. In Part 5, we discuss the struc-
ture of these models and interrelations with the stochastic
Hamilton—Jacobi eqn (31) and mathematical models of
classical and quantum flows.>*~ Interrelations of the non-
linear Schrddinger equations and FPK equations with sto-
chastic optimal control in Refs’’™® is discussed (sce
Section A.4). Application of this approach in Ref.® is
demonstrated.

3 ASYMPTOTIC METHOD IN STATISTICAL
ANALYSIS OF NONLINEAR SYSTEMS ON THE
BASIS OF THE FPK EQUATION

As an example of statistical analysis on the basis of the FPK
equation, we consider a nonlinear dynamic system
described as:

%+ [280 + 2uad(®)1x + Q{1 + 20%(1)] + eF(x, x, %) = n(1)
(33)

where «(z), x(), and 7(¢) are stationary stochastic correlated
processes with zero mean values and bounded power spec-
tral densities S.(w), Sy(w) and S,(w) and autocorrelation
functions R,(7), R,(7) and R,(7), respectively; the nonlinear
function F(x,x,¥) has an arbitrary form; € is a parameter
with a small value; 3y, u, Q% ¢ and » are constants with
arbitrary real values. Eqn (33) describes many nonlinear
systems subjected to different random excitations such as
earthquakes, vibration loads, random friction forces and so

0n16—28

Remark 3. In eqn (33), we assume that random
parameters a(f), x(¢) and 5(¢) do not lead to large changes
in amplitude and phase of output during the time period of
motion. We also assume that the parameter 8 for the fric-
tion force is small and eqn (33) describes a narrow-band
dynamic system. Under these assumptions, the output of
the system in egn (33) is likely to be a quasi-harmonic
vibration with a slow change in amplitude and phase with
time. The numerical simulation of such a system subjected
to a real strong nonstationary random excitation as an earth-
quake accelerogram confirms this state.'%!7

Consistent with to the asymptotic method of Bogolyubov—

Mitropolsky, "' we assume:

x(f) = A(r) cos(§ + Y(1)) (34)
and

x(f)y= — QA() sin(Q + Y(2)) (35

where A and ¢ are amplitude and phase, respectively.
The equations in a ‘standard form’ "6 for the system [eqn
(33)] are:

A= QZA( )[ — 2Bg(t) — 2pa(£)i(t) — 26 x(Dx(t)
+ eF(x, %, %) + vn(t)]
. ) .
Y= - m%(t—)[ — 2Bi(r)
— 2pa(D)i(t) — 200°x(1)x(t) + eF(x, %, %) + m(1)]

(36)

The vibrational functions contained in the regular and fluc-
tuational terms of eqn (36) can be extracted with any
degree of accuracy. In the first approach, vibrational func-
tions are extracted with simple averaging within the time
period.

It is possible to define a nonvibrational equation with
higher degree of accuracy using a special variation of the
asymptotic method suggested in Ref.!. In this method, the
two parts of eqn (36) are rewritten in the following form:'®

A=8,G"+G; y=B,H +H, 37

where G* and H* are regular terms, and G and H are
fluctuational terms.
Taking off the fluctuational terms:

A=B,G"; y=B,H" (38)

and expanding functions G* and H* in series on a small
parameter 3, we obtain

A=ByG) +B5G,+..; y=BoH, +B3Hy + ...  (39)

The functions G, and H, are evaluated by simply averaging
the functions G* and H* on the parameter & = Qr + Y(¢) as:

G, =(G*)q>; H, =(H*>q> (40)

The functions G, and H, determine nonvibrational terms
from an expression as:

0G" L 9G" \ (oH' oM
(o) (s pn)

and the functions u, and v, are, respectively, determined
from the expressions

Bul

a"’I O _{g*
Fry [H (H")s] (42)

—[G —{G"el %= 0

To extract the vibrational functions from the fluctuational

terms, we use the modified method suggested in Ref.'®.
Present the fluctuational terms in eqn (36) as the sum of

means (m;, m,;) and centered random components (£ (1),
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£,(0)) with é-similar autocorrelation function:

Gl = Gratsy) = 204~ OO
= 2ua(DF(OA ™ =@ 'y(r) sin
+ 6QA sin 2®x(1) — pa(A(1 — cos 29)
=m; +§(1) 43)
and
HO) = = G0+ 2004 X0x020)
+ 2ua(xA xR A2
= — Q7 'A7 (1) cos ® + oQ(1 + cos 2&)x(1)
— 2pa(t) sin 2& = m, + £5(1) (44)
where

my = < — é"(t) sin ® + oQAx(?) sin 2$

— na(A(1 - cos 2<1>)> (45)

my = < G )n(t) cos @ + afx(1)(1 + cos 2®)

— pad(i) sin 2<1>> (46)

Intensity coefficients of £,(¢) and £,(¢) processes are:
K, = J:w(fl(t)fl(f‘*‘ 7)) dr
= I _ OcK[G(z‘), G(t+7)] dr
0
+ _[_xKIG(t), H(i+71)]dr

0
+ J_QK[G(t + 1), H(t)] d7

2 20242
a
S, () + 2

v

QZTI

$,29) + A [S,(0) + S, (2D)]

47
and @7

K, = J_x@z(t)gz(f +7))dr
= J __KIH(), H(t + 7)) dr
0
+ J_mK[H(t), G(t+ 7)) dr
0
+ J_mK[H(t +7), G(¢)] dr

2
0% ,,(9)+6292[ (0) + sx(zm] ~/.LZS 29)

(48)

where K][...] is an autocorrelation function; Se(...), S,(...)
and §,(...) are power spectral density functions of c(?), x(¢)
and 7(?) processes on corresponding frequencies.

The expressions [1%K[G(t+7),H®]dr and [°.K
[G(¢),H(t + 7)] dr give solely vibrational terms. In the
first approach, therefore, the random processes &(f) and
£,(¢) may be considered as statistically independent stochas-
tic processes. The means m; and m; can be calculated by the
Stratonovich formula' as:

@ , Gt + )] dr

0
™= I—mK A

0
n J_mx[aGm H(+ )] dr

oy
»2 30292.4
492AS,,(Q) + ——=5,(29)
+uA [SU(O) + isam)] 49
and
0 oH
my = J- K[—W(t) G(t+ )J dT
0 8H(t)
+ J_,,K[ " JH(t+ )] dr

=o'’ L R(7) sin 2Qr d7

+2u° JO R, (7) sin 2Qr d7 (50)

Note the following two special cases:
(1) Processes a(t), x(t) and 5(f) are white noises:

S$.(20) = 5,(20) = 5, (2);

v 30°0%4 5,

m=0m= gt Ty T
2 2 242
_ 14 9 A 2,2,
Ki= 5ot T+ 20°A%
K=+ -‘ g2 1 1)
292A 2

(2) For p = 0, we obtain the result as in Ref.'®.

Calculating Gy, G,, H,, H,, m|, my, K and K, the ampli-
tude A and phase ¢ contained in G and H become fixed
(nonrandom)."'® Thus, the equations for the amplitude
and phase with extracted vibrational terms in the second
approach can be written as:

A=ByG, +B5G2+m +£,(1) (52)
and
¥ =BoH, + B3H, +my + £5(1) (53)

Remark 4. If the correlation time 7. for a(f), x(¢) and 5(5)
are, to a marked degree, less than relaxation time 7,, for the
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vi(t) 1 ()
P +2Bpr2

f—lererrn

.
2pa(t)

@ 200%01)

Fig. 1. Block diagram of nonlinear parametric system.

output amplitude and phase of the dynamic system of eqn
(33), while the responsed time value of the system, to a
marked degree, surprasses — 7, then it is possible to apply
workable stochastic methods by replacing real excitation
processes a(t), x(t) and n(¢) by equivalent é-correlation
processes. In this case, we can use the Markov stochastic
process approach and the FPK equations for the definition
of probability density functions of the output amplitude and
the phase of the system represented by eqn (33). For the
system in egns (52) and (53), the FPK equation for the
definition of a two-dimensional mutual probability density
function of the amplitude and phase (A, ¥, 1) is:

Ip(A, ¥, a
POV 218,61+ B3G +mlpia, ¥}
d
- N{[50H1+B(2)Hz+mz]p(A, ¥, 1)}
+ az[K A, Y, 0] az[K A ]
94, 1At +a|//2 (A, Y, 1)
(54)

The preference of this method is in the independence of eqn
(52) from egn (53) for any type of nonlinearities of eqn
(33). In this case, we investigate statistical characteristics of
amplitude A(?) separately on basis of the one-variable FPK
equation for p(A, ¢) as:

ap(A, 1) _

a9 .
= = By +B3G, +m1p(A, 1))

19
+ 5 otKipA, 0l (55)

The solution of the one-variable FPK equation is simpler
than that of the two-variable the FPK equation. Application
of the variational Bubnov-Galerkin method for solving eqn
(55) is shown later in the concrete examples.

Example 1. Consider the dynamic system of eqn (33) as:
%+ (2B + 2pa()]x + Q3[1 + 20x(D))x + eF(x, %, %)
=w(t) (56)

where eF(x, x, X)=2k(¥x +)‘c2)x + 'y1x3 + 'yzx5 + exxz; g,

k, v, and v, are constants. Fig. 1 show a general block
diagram of dynamic system eqn (56).

The nonlinear dynamic system that is eqn (56) describes
the behavior of different systems under random excitations,
such as a structure under vertical and horizontal accelero-
grams of a strong earthquake, an automatic control system
with stochastic feedback gains, a stall of tracking in a non-
linear automatic control system, and so on. The investiga-
tion of statistical characteristics of eqn (56) has independent
importance in this case.

Using eqns (34)-(44), the amplitude and a phase for eqn
(56) are obtained:

. | 2,2 3,4
A(t)=——{—Boﬁ-—QzA (1 — cos 2®) — kA

Q%A

At 1
X sin 4% + 7'—4—(sin 28+ > sin 48)

6
1
+ 7ZQA—(— sin 6@ + 2 sin 4% + %sin 2@)

16 \2
- "’ﬂiAi(l — cos 48)] + cAQx () sin 28
- _é,,(;) sin & — po(NA(1 — cos 2d) (57)
and
W)= — # [%BOQAZ sin 2& + 2kQ°A*

1 1
X <§+cos2<l>+ Ecos4¢)

A4
- 7_‘8_(3 +4 cos 2 + cos 4)

A /1 15
- L(icos6®+3 cos 4% + ?c052<b+5)

1 1
+ &A% <§ sin 4® + 1 sin 2@)

2 42

A
+ 2 (1 4 cos 2®)] + oQx(1)(1 + cos 2&)
20 s & — po(rysin 28 (58)

In egns (57) and (58), the vibrational functions are
extracted with transition from simple averaging over a
time period to the second approach shown in eqns (40)
and (42).

Remark 5. As mentioned above, averaging over a time
period due to the availability of a fluctuational excitation is
possible, due to the assumption that the correlation time 7.
of Y(?) is less than the period of normal mode of vibration.
Tacking off the vibrational functions from eqns (57) and
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(58), the basis of simple averaging leads to the disappearance
of all the nonlinear factors. This explains why it is necessary
to transit from simply averaging over a time period to the
second approach. The vibrational functions can be extracted
separately from the fluctuational and regular terms. For all
these it is necessary to take into account correlation connec-
tion between an excitation and a phase.

The vibrational functions extracted from the regular
terms in the second approach as:

G’ = —aA- A’ + LAY + LA, (59)
H'= —a,— a,A* + a3A* + a5A° — agA®
where
e KR 3y, &8y Sy, 11K°Q
a;=0p; a2 = 2 8(2+4ﬂ’ = 160 16
Bhy,  Slyi e BG g = Pk
Rw 25607 2560° “T 200 U7 Teaq
_Svm, 1325y, e Bok
1280 ¢ 61440 ' T8 2
5
L= g 28N (59a)

T 3207 7 2562

Thus ‘the shortened equations’ eqns (52) and (53) with
extracted vibrational functions can be written as:

A= —aA— LA+ LA’ + LA +m, + £,(t) (60)
and
V= —ay— @A’ + ;A" +asA® + my + £5(1) 61)

The functions m;, m,, £,(¢) and £,(r) are evaluated using
eqns (45)—(50). Eqns (60) and (61) can be used to investi-
gate different special cases with practical importance.

The FPK equation for eqn (60) can be obtained using eqn
(55) as:

ap(A,1) a[d _1 3ag
a  9A 2A @ 2 ~#T% A

—LA’+ LA + 13A7] PA, 1)

2

19 .2
+ ESP[(lh +agA")p(A, D] (62)
where
e 28, (Q) —— 05, (20)
7= 292 s Ug = 2 )

ag = u2S,(0); ajo = 1.54°S,(20);

* 2
ag=ag +ag+ =410

3

The stationary distribution p (A, #) as a solution of eqn (62)
can be obtained as:

c
A)= ————ex
Px(A) (@ +a§A2) P
y 2J [0.5a:A"" ~ (@) ~ 150y ~ay — aA — 1A +bA° + A7)
(a7 +a3A%)

(63)

The constant C is evaluated from a natural condition of a
normalization as:

|_pawyar= (64)

To obtain a nonstationary distribution p(A,?) as a solution of
eqn (62), we use the Bubnov-Galerkin method. This
approach is described in Ref.'S, Other approaches to
solving the FPK equations from the point of view of Lie
group analysis, generalized symmetries of partial differen-
tial equations and connection with the Schrédinger
equation are described in Appendix A.

4 THE METHOD OF A NONSTATIONARY
SOLUTION OF FPK EQUATION

The nonstationary solution of eqn (62) is defined as:
PAD=pa(A)+ D Tu(pn(A) (65)
m=1

where p,(A) is an approximating function with boundary
conditions p,(0, 1) = 0; p(, 1) — 0.
Assuming function p,(A) is given as:

A’ A
22)1=(32)
207 203

0.507
a; — l.5a3 —dg —djp

A
Pn(A)=— eXP( -
o]

A=

L,(...) is Laguerre’s polynomials that corresponds to solu-
tion of linear forced vibration. The function T,(f) is eval-
uated by a series of equations as:

; (0 T®) + B T =0 (=1, 2, ..., 1) (67)

where

V2% i -
= = J Oxme ELn(0)Li(x) dx;

oy W2,

7
Bj= — —=Nypi — —LZa%Ns,.
'mj 20:[; mj o 8/Y5mj
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Table 1. Coefficent values aip;o, N1, Nomj, Namjs Namj, Nsmjforj =1,2,3

m A0 Nimj Nopmj

1 0912 0.116 0.0297 - 0.788 — 1.858 — 4.858 0.0763 0.319 0.285
0.116 0.137 0.1 — 0.0336 - 0.524 0.99 — 0.254 ~ 0.283 — 0.082

3 0.0297 0.1 0.109 — 1.002 — 9.062 — 65.33 - 041 — 0.206 35.5

m N N Nsp

1 0.717 1.357 0.815 5.77 5.77 — 26.6 0.51 234 1.92

2 0.599 1.695 1.3 7.59 3.39 5.32 2.16 2.40 4.61

3 — 0424 —-0.113 1.865 — 442 - 3.51 229 2.72 4.00 11.6

—1
—(a; — 1.5a3 —ag — a10)0; Npp,

+ 110\ N3y — 10T Ny

Nimi =242 J [x”ze"‘L (x)Ixe ~*Li(x) dx
-2 J'O E[e** ()1 % T L(x) dx;

N =2/2 J: %[xe " Ln(0)e T Li(x) dx;

N}mj = 4\/E J” —{x

Nim =8V/2 J e T L, (0lx"%e T Li(x) dx;

3¢ F L (0)]x' e~ *Li(x) dx;

d “x —x
Nsmi= |, —z[xme m(X)xe ~*Li(x) dx
The values of coefficients Nl,,,,, wNsg for j =1, 2,3
obtained in Refs'®'? are shown in Table 1.
The solution of eqn (67) is T,,(¢2)=C exp{\,?}. The
values of Aj, Ay,....\, are determined from the following

equation:
aph+By, N+ By
=0 (68)
aln)‘+6lm ann)‘+6nu

and the values of C‘Ik), Cg‘), .
are obtained from:

C®, corresponding to A,

D [amMel) +BmlCP =0 (=1, 2,...,n) (68a)
m=1

Remark 6. Coefficients C¥ are evaluated to anzr arbi-

trary factor D, that is C(")_DkK(") C(k) D K; ),

C(k) DkK(k) where K( K(k) K(") are the minors of

elements from first row of the determmant in eqn (68).
The complete solution of eqn (67) define as:

n
Tu()= D DKPeM (69)
k=1

The coefficients D, are obtained from an initial states at
t=0, p.(A, 0) = py(A).

Substituting eqn (69) into eqn (65), the nonstationary
solution at ¢ = Q is obtained as:

PA,0) =po(A)=pu(A)+ D D Dik¥pnA)  (10)
m=1k=1
Multiply eqn (70) with
Pm(A)]
| dA
[Pst.l(A)

and integrate from O to %

J " Po(A)Pm(A) dA— J' * pu(A)pm(A)
0 0

Psui(4) Psu(4)
J S S DL APn®) 4 an
m=1k=1 sll(A)

where p (A) is a stationary density distribution function of
probability for a linear system obtained from eqn (66)
under the assumption that m = 0, Ly(...) = 1.

Taking into consideration the orthogonality of functions
Psu(A) and eqn (66), we obtain:

Jopm(A)pm(A) J; ( 2%)

PsifA)
A2
XL3,,<—>dA=1 (72)
207

From eqgns (71) and (72), the equations for the coefficients
D, is calculated as:

n @ 00 A2
2Dk = Jﬂpo(A)Lm(m) dA
00 A2
f Py ( 52 ) A (73)
1

Thus the nonstationary density distribution of the amplitude
probability is obtained:

PAD=p )+ D Y DEPNp,(A) (74)
m=1k=1

The value of p(A, 1) can be calculated with any degree of
accuracy independent of the number n. The density
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Fig. 2. Probability density function of a nonlinear parametric sys-
tem in nonstationary regime.

distribution function of probability p(A, 7) provides the
statistical evolution of vibration amplitude of eqn (56)
and takes into account the transient processes. When ¢t — o,
P(A, ) — py(A), which is the solution for the steady-state
vibration. The density distribution function of probability
P(A, 1) gives us exhaustive information about the statistical
behavior of the amplitude as a main characteristic of the
motion process. On the basic of the function p(4, 1), it is
possible to evaluate the statistical moments of vibration
amplitude using the fundamental formulas of probability
theory and evaluate the probability for the amplitude to
exceed a concrete level. For example, it is possible to

evaluate stresses in machines and structures to assuare
3
safety.]6'17'20‘22'2

4.1 Examples: statistical analysis of nonlinear systems
with stochastic parametric excitations as a benchmark
application of the FPK equation

Consider a special case of eqn (56) when v, =
v, =e=0.

Example 2. This relates to nonlinear system with
nonlinear inertia and stochastic linear parametric excita-
tions. In this case the equation of motion is written as
following:

%+ (280 + 2ue(0)] + Q1 + 20x()]x + 2k(ix + (x)%)
= —w() (75)
The expression by a coefficient k describes the nonlinear

inertia of eqn (56). Taking into account eqns (63) and (65)
using the second approach, we obtain:

CA 1,A*
(A= —2 il 76
PalA) @ ray exp{ a } (76)

and

1
P(A, 1) =pu(A)+ { F[(Az) —{adp1(4) CXP(NJ)}
1

1 1
+ { Z,—%KAZ)— AN+ 37,1[("3) —(AMNP(A) CXPO\:’)}

(7
where
= @i +11017; I =—- k_ﬁo; N=— _@1_1: —0.13;
(a3)? 2 ap
A? A?
No=—0.18; pj(A)= = exp] — —s b |1~ —|;
p=Zew| - 1} | ]
A { A? A At
A)= — — == |1- — 77
Po(A) -2 exp ] 2‘7?}[ 202+ 807 (77a)
For k = 0,
CA a
Pu(A) = ‘ (78)

(a; + aiADP” 07 af

Following this, the expression for p(A, f) in this case is
similar to eqn (77).
For p = 0, we obtain from eqn (76):

CA 1]A2 a)
t(A) = ONN — b=— 9
Dst(A) (@ T agA) exp{ a } 1 2 (79)
and for k = 0 eqn (79) becomes
CA
A)= —————— 80
P = (80)

Fig. 2 shows the evolution of p(A, 1) in the time domain.
Curve 1 describes the behavior of the nonlinear system
according to eqns (76) and (77) and curve 2 describes the
behavior of the linear system according to eqns (77) and
(78). This graphical representations of simulation results
demonstrated dynamic characteristics of the system in the
transient process, the influence of nonlinearity on the
dynamic behavior, the sensivity of the dynamic motion to
the parametric excitations, and so on. Using eqns (76) and
(77), it is possible to perform such tasks as safety valuation,
stochastic stability, and optimization of structure.'®-23

Fig. 3 shows the time histories of the first three statis-
tical moments calculated by formulas eqns (76) and (77)
taking into account the transient process. The third statis-
tical moments for the nonlinear system have nonzero values;
moreover, for a low-frequency system the third statistical
moment can be negative in the transient period of motion.
This fact characterizes a deviation from a normal law and
shows an essential peculiarity of nonlinear systems. In Part
2 of this paper, we took into consideration this result in the
models of statistical linearization of nonlinear stochastic
dynamic systems.

There is an essential interest in studying stationary forced
vibrations of nonlinear systems. Let us briefly discuss a
special case of eqn (63).
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Fig. 3. Statistical moments M,, M, and M;. 1: w = 20; 2: w = 60.

Example 3. In the case of nonlinear inertia when a(f) =
x(#) = 0 in eqn (75), a ‘shortened equation’ for the ampli-
tude A from eqn (60) is written as:

A= —aiA+ 1A +m +£,();

m, = d ——Sn(Q); K, = 2Sn(m L= "B" (80a)
4924 20?
Then:
I
Psz(A)—Aexp[ 2( 2A2+ 4'A )] (80b)
l

The constant C is evaluated from eqn (64).

As an example, for a pendulum with a length /, a physi-
cally permissible amplitude of vibration does not exceed the
value /2. Thus:

2
c=¥2 JO exple)(—z+ 7)) dz;
_ a2 LRy
- K] 2= 2a, (800)

Changing the upper bound of integration in eqn (64), the
integral diverges by A — . Whereas from physical point
of view, the value of vibration amplitude A < I/2. If the
nonlinear inertia is absent (k = 0), then 7, = 0 and for a
linear system we obtain the Rayleigh distribution.

Example 4. Consider a stationary regime of the forced
vibration of a nonlinear system [eqn (56)] with the nonlinear
inertia (k > 0), elasticity (y, < 0, v, < 0) and damping

o

r

v

CX.}

70 i »

Fig. 4. Physical pendulum.

(e > 0). In this case for p = ¢ = 0 and eqn (63) rewritten:

A 2 a 2 Il 4 12 6 13
= — e —A —A
Pu(A) Cexp[ Kl( 2A 2 + 3 + = 8

(80d)
where
ay=PBp; I, = g— %; L= ;2%; 3=%;
C= —K—' j: expl — (24 ¢32° + 42 + ¢52°)] dz;
1 K. LK, _ LK (80c)

Cy= Cp= 7, C5=
25 3a} 4t

In this case, the integral for evaluating for a constant C
converges. If k = 0 then 7, = &/8 and the solution corre-
sponds to a nonlinear elastic system,'®2328

Example 5. This pertains to a physical pendulum with
stochastic nonlinear parametric excitations. Figure 4 shows
the model of a physical pendulum. The coordinate system
(X, 0,, Y) is an inertial coordinate system, while the coor-
dinate system (x, o, y) is connected with the pendulum ful-
crum, translating with a law xo(7) and y(r). A force f,(¢) acts
on the pendulum, as shown in Figure 4.

The model of a physical pendulum provides an important
description for: (1) the vibration of a rigid structure sub-
jected to seismic ground motion in vertical and horizontal
directions; and (2) vibrations of a parachute with a load on a
trajectory relative to the center of mass. In the first case,
components of the ground motion are parametric excita-
tions, while in second case, horizontal and vertical air
flows are parametric excitations. Because this model has a
broad engineering application, the solution of a correspond-
ing FPK equation is studied as a benchmark.

Assuming a viscous damping force, the differential
equation of motion for the pendulum can be written as:'®

I.g= — bp — Pl, sin ¢ — Mxy(1)l,

X cos ¢ — Myy(t)l, sin p — I, £,(¢)

where ¢ is the angle of the pendulum, /, is moment of
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inertia of the pendulum with respect to axis z passed
through point O; M is a pendulum mass.

The functions %(?), yo(¢) and f;(?) are correlated station-
ary random functions of time with fixed probability charac-
teristics (with known density probability functions,
autocorrelation functions and power spectral density func-
tions with zero means).

Rewrite eqn (81) as:

@+ 280+ @ sin g+ Hafa(t) cos @ + pafa(t) sin o

= —ph(D) (82)
where
b Plz Ml,‘ o M_Iz
260— Iz, Q= Iz - k1= Iz s Wa=Hp3 = Iz ’
H@)=3(1) /(1) =3o() (82a)

This class of mathematical model is a generalization for a
stochastic variant of a dynamic system described by such a
differential equation as the Mathieu—Hill type equations.'®-%°

Specific qualities of stochastic nonlinearity were dis-
cussed in Refs'®~2%2*25_ The above-mentioned peculiarity
is essential for a choice of a method for statistical analysis
and a stability criterion for the dynamic systems,''8-20

Expanding the trigonometric functions into power series
and taking into account first two terms under the assumption
that ¢ is small, eqn (82) can be rewritten as:

¢+ 26o¢ +@[1+ pf(0)] 0 — iuzfz(t)so - —uafa(t)so
— Yo’ =w(r) (83)

where

rui() + wafr (1) = v(e); () =1()
(83a)

The equation for amplitudes of vibration with extracted
vibrational functions from the regular and fluctuation
terms in the second approach is:

92
Yo = F; 929

A= —BA+m + £ (84)
where
= B 45 (45,09 + 5,(4D)] + = 4,

9216 02 32 92

1
X [S() + S, 3D — Tuwad’ Sy, 20)
5 2
34 Kav
2024277

+ 16 g2 ASm(® — 92 WAS2Q) + ———5,(R)

(85)

The coefficient of intensity for a process £,(¢) as:

1

6
24608 92A

K= I (El(f)fl(t‘f'f)) dT—

4
X [S520) + 8,(4)) + 152 28 92A

X [S5,(®) + 5, (30)] - 4uu3A“S,f,(2m

1 yyv v
+ g A (@ - 3 g2 2A28f(2ﬂ)+ 25,(Q)

(86)

The functions m,, £,(f) are calculated by applying har-
monic linearization.

In egns (85) and (86), the functions S, (28)) and S7,(49)
are power spectral densities of a process f3(¢) on the second
and fourth frequencies; S, (2) and S}, (3Q) are power spectral
densities of the process f,(f) on the first and third fre-
quencies; Sz (2Q) is a cross-spectral density function
between of processes f{r) and f3(#) on the second frequency;
S5,(©) is cross-spectral density (a cross-correlation function
defined) of processes f,(¢) and 5(f) on the first frequency;
S7(29) is power spectral density function of a process f{r) on
the second frequency; S,(f2) is power spectral density func-
tion of a process n(#) on the first frequency.

The FPK equation for the probability density function of
eqn (84) is:

ap(A, 1) d -
”at = = ollaA™" +5(a5 —ag - a)A
+ 2(03 - a4)A3 + azAS]P(A’ t)]
2
t3 6A2u(a7 +2(as — 2a5)A” + (a3 + ay)A*
+2a,A%)p(4, 1)) &7
where
1

1 u% 1
a = 128 92["13(9) +S,3D)]; a,= 2 S7HH3SH, (20);

2

2027

1 Hov

16 02 o (D) ag= —92 25[(20) a; =

as = =39, (ﬂ)

(88)
The stationary distribution of probability for eqn (87) is:

C
[(a7 +2(as — 2a¢)A? + (a3 + a)A® + 2a,A°]

N zjaﬂr' +5(as —ag — a))A + 2(ay — a,)A® +a,A°
exp — 7 4 6
ay +2(as — 2a)A* + (a3 + ay)A* + 2a,A

PalA)=

(89)

The constant C is evaluated from:

2%
[, Praa=1 (90)

The upper limit of integral eqn (90) depends on the physical
condition.
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In this case:

1

€= 1| en?.  eot xS 2n)®
— D D
2a;| 2 Dt =D+ =g Dot =505

on

where
D=a®~ I]B—(Bg+1),y(33‘l);

D1 =a(B, - I)B—(BZ+I)Y(B;—I)(BZ+ 1)
o -2)6-- (132+1)7(83~ ”(Bl -1
—qBhg- Bt 1)7(83 —2)(33 —-1);

D, =B~ Ng= B+ D Bs=D(p _ 1yB, — 1) (91a)
—oB-Dg-B+D B=2(p 4 1yB, 1)
— B 2= EtDBi-Dg _ |yB, 4 1)

Dy ="~ Bg~ B Dy B DB, — 1By + 1)(Bs — 1)

and
_ _asle’ ~o’B+ B +1]
'T 2m;a(a—B)a—nB-7v)
_ (a, — 2a,)(y — B)
2a;(a — BB — @) — (y ~ )]
Sa;a 7a®
- ; 91b
2o —Ba—7 " AP —a—Byy OO
B 5as8 7 Bla—y(e+B)]
2T 2By —B 2B-7e?—a—Byl
_ as _ (a1 —2a,) .
20,8 —B)B-1 2aBB-a)— (y— )
B Sayy 7 yla—Ba+p)]
T 2a(y - o)y —B) ' 2(B—yle? —a— Byl
b
2a,v(a—BYB— 1)
(a) —2a4)(B— o)

T 24— BB-0) - (v— )]

1
o= - ik, cos(—arccos kz) —ka;
a, 3

B= lI’q {cos(1 arccos k2)
a; K)
1 12
+ \/5[1 — cos® (—3— arccos kz)] }—k;

The coefficients v, k|, k, and k3 define as:

1 1
y=—k {cos ( = arccos k2>
ay 3

- ﬁ[l — cos? (% arccos kz)] 1/2}

2(ag — as).

— ks ky = 3
33 K3 3a,

k= \/307(03 —a;) — 4(ag — as)’,
1= 3 ;

_ Has —as)’ — 9ag — as)(a; — ag)ay — 2Taya]

3
27 (\/307(03 - 04)6— 4(ag — 05)2)

The nonstationary solution of eqn (87) is obtained from the
Bubnov-Galerkin variational method as:

k

PA, 1) =pu(A) + { 5(17—2[(‘42) — (AP, (A) exp()wt)}
1

1 1
+ { 0~ D1+ LA~ ANt eXP()\zf)},

2 ay
= — 92
7 5(as — ag) ©2)
where
(A)= CA(AZ_H)B|—1(A2__6)Bz+](A2_'y)B_q—l
Dst 2a,
(93)
and
a_AJent en et en' |
(A)_C{ 7D+ D+ Dy + D g
n_J@n° e @en' en? |
(A)—C{ e D+ gDt Dt D3 (5
2 A
Po(A) =Aa; exp<— ——) %94)
0 1 20_%
Here:
A A? A?
P"A’—a‘f‘”‘f’(“ﬁ) (‘*m)’
A A? A At
rim=gon(-52) (i) o

Therefore, a complete statistical description is given for the
nonlinear motion of the physical pendulum.

5 CONCLUSIONS

In this paper the probabilistic description of the response of
a nonlinear parametric system driven by external stochastic
processes is discussed. On the basis of the asymptotic
method of nonlinear mechanics, an exact solution of the
FPK equation for a probability density function is
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introduced for a class of nonlinear parametric systems.
Using the solution of the FPK equation the transient and
stationary processes of this class of dynamic systems are
studied as is the sensitivity of the nonlinear system to dif-
ferent stochastic color correlated parametric excitations. It
is shown that the dynamic effect of the nonstationarity on
the response may be significant and the peak amplitude of
the nonstationary moment response may be higher than that
in the stationary case. Moreover, the third statistical
moment has nonzero values and different behaviors can
be positive or negative for essential nonlinear dynamic sys-
tems. This result characterizes a deviation of response out-
put from a normal law and shows an essential peculiarity of
nonlinear systems. The FPK equation approach provides
background for studying stochastic stability of nonlinear
stochastic parametric systems with stochastic nonlinearity
in Parts 2 and 3 of this paper.
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APPENDIX A GENERALIZED SOLUTIONS OF FPK
EQUATIONS

In this appendix, we describe a different methods of a
study of the solutions of the FPK equations. Considerable
interest has recently been devoted to the determination of
the ‘generalized symmetries’ of a differential equation. We
study nonlinear forms of a linear partial differential equa-
tions and extended symmetry properties of time-evolution
partial differential equations, including the FPK-type equa-
tions. Even if (in general) no nontrivial symmetry present,
in some a particular interesting cases, some special sym-
metry is allowed. Using this approach, we can define a
new solutions of the FPK equation (as a nonlinear form of
any linear equation) on basis of a particular solution of a
linear equations.

Appendix A.1 Case Al: Lie group analysis of
generalized symmetries and solutions of FPK equations

If a time-evolution of a partial differential equation has a
solution f =f(x, ), x € R, t € R, a generalized symmetry is
any continuous transformation (possible nonlinear or only
local) x = x', t = ', f — f'(x, 1) is also a solution of the
given equation®'. These transformations are assumed to
depend analytically on a real parameter &, so that attention
is mainly centered on their Lie generators, which, in this

case, can be written in the general form®%? as:

a d ad
U=E(X,I,W)j—+T(X,I,W)—+¢(X,1,W)-—- (Al)
ox ax aw

where £, 7, ¢ are the functions to be determined, and

]
V=g t,w,wy,..,w,)—,
aw
‘., ai"’(' 1,...,n) A2
W=—, '::_-l: PEXT)
aw; ' axd " )

is a hierarchy of a time-dependent Lie—Bicklund vector
field.®! The assumption that the analytic function g depends
also on x and ¢ does not affect the results. This means the
existence of a Lie— Bécklund vector field and therefore, for
the sake of simplicity, they will be omitted.

We investigate the symmetry properties of one-variable
FPK-type equation, namely the equations of the form:

ow 3 19%, ,

= " 5w + 2o ow) (A3)
or also in the more general form

ow ow o*w

—=A - — —_—

o (x)w + B(x) o +C(x) e (Ad)

where a, g or, respectively, A and B, are given the regular
(analytical) functions of x € R, with C(x) = 1/2g(x) # 0.

For describing the Lie—Bicklund vector fields evolution
equation, the jet bundle technique is a suitable approach.®!
We consider the submanifold:

2

_ ow ow w
F= o A(x)w—B(x)g—C(x)az—_O (AS)
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and all its differential consequences with respect to the
space coordinate.
The invariance requirement is expressed as:

LF2o0 (A6)

where Ly(.) denotes the Lie derivative and £ stands for the
restriction to the solutions of eqn (AS).

We construct the second prolongation of the vector field
eqn (A1) and apply it to eqn (A3) or eqn (A4) in order to find
the conditions on the functions &, 7 and ¢, in such a way that
eqn (Al) generates a symmetry of eqns (A3) and (A4). For
eqn (A4), the conditions are following:

T =Tw= 0, Ew = O, ¢ww = 09 (A7)
implying 7 = 7(f), £ = £(x,¢) only, and

C
o=alxn)+Bxow, £ =F55+ 2 (A8)
This equation can be solved with respect to x to get
1
E=c(ng+ 518G (A9)

where ¢ = ¢(¢) is a function of 7 and G = G(x) is an integral
function of g_](x). Acc:ordingly62 we have:

By =pic+Pprc,+ P37+ paTy, pi=pi(x) (A10)
and
B:=qic+qac; + @37 + qaTy, gi =qi(x) (All)
where
Bg, B,  8x 1 Bg,G B
p=—F-—+Zpp=——p3=-— -
'Tg g 2 g 28*  2¢°
B,G  gu.G & G
- = == — — Al2
26 T a Tag T g (A12)
and
&°pi &P
q1=8Bp, + —2-1+Axg: @=Bp + =5
&Py | AgG 8P
g3=Bp; + “2—+ ‘2—+A; q4=Bp,+ > (A13)

In order to find 8 from eqns (A10) and (A11) we have now
to impose the condition 3,, = 8,,, which becomes:

1
Cp+841.C= — (EGTm + 8¢I3x‘n) (Al4)

If there is no a special relationship between the functions G,
84910 893, appearing in eqn (A14), the only solution allowed
by eqn (A14) is just ¢ = 0, 7, = 0, which leads precisely to
the ‘trivial’ symmetries generated by v, = 3/(3t), v, = w(d)/
(ow), v3 = a(3)/(dw) [if w and « are solutions of eqns (A3)
and (A4), the same is true for kw + «] shared by all auto-
nomous linear equations.

Some nontrivial symmetries can arise if some relation-
ship occurs between the functions of x in eqn (A14). If in
eqn (Al4), assume a = x, g = 1 and then from eqn (A14)

becomes:
1
Cp—C= — 'z'x(fm —471,), cp=0C, Ty =47, (A15)

and the new symmetries generated®>> by

i} a d
=e'— vs=e ' —+42xe 'w—;
va ox Us 6x+ ow
d ] a
2t 2t 2t
=xe" —+e" ——e"w—;
i ™
[i] d d
-2 ] 2.-2
= —— — 4 2x — 15
v; =xe . e 6t+ e “w e (AlS5a)

are present. In this case, v, expresses the property that if
w(x, 1) solves the equation, then, in addition, w(x + eé’, ),
£ ER, does; vs states also that exp(2exe ' +&’e %)
w(x+ee~',1) is a solution, whereas the remaining two
operators generate more complicated symmetries
involving simultaneous x, ¢, w. For a case a = x, g = x
from eqn (A14), it follows ¢, = 7, = 0 and
3 9 N9
Uy =Xa, Us =xt-a—x— (lnx+ E)Wﬁ’
x99 1 N9
Vg = ilnxa-Hb_t_ Z(]nx+ E)w%,

11 a+t2‘9 ! t1n x +1n? +t+t2 4
vy=xrinx— —_—— = X X — W
! ox ot 2 4/ aw

(A15b)
In this case v4 expresses the rather elementary property of a
scale invariance of the equation.

Example Al. The equation

ow  dtw

Frinire +f(w) (A16)
belongs to the the following class of the partial differential
equations which admit a hierarchy of Lie~Bicklund vector
fields® as eqn (A2):

ow  Fw ow\? aw

= M — — 17

=5+ (u)( ax) AWML (AL
and the functions f;, f, and f; satisfy the system of the
differential equations

Ffs=0, fofi =1 M3+ (ifs) =0 (Al7a)

Thus, if f3 = f) = 0 and f, = u, then eqn (A17a) is satisfied
and we obtain the well-known Burgers equation. Like the
Lie point vector fields, the Lie—Backlund vector fields as
egn (A2) can also be used for finding solutions to the under-
lying partial differential equation.®!

Appendix A.2 Case A2: Nonlinear forms and
transformations of linear equations as solutions of FPK
equations

For a study a solutions of nonlinear equations as:

ow  dw

ow ow
—_—=— F — ... r-l — e
” 8x’+€ 2(w, Fe )+ ... +€& T F(w, o )

(A18)
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where F is a polinom of sth degree. Discuss solutions of a
linear equation:

ou du

o
and define a transformation operator w = Ku that trans-
form a solutions of eqn (A19) in a solutions of eqn (A18).
The solutions of eqn (A18) define®’

(A19)

wx) =ux)+ Y &' JKn(Pls---rpn)“(x+Pl)

n=2

...ulx+py)dp,...dp, (A20)

where

a
Kn(plv ---vpn)___kn(aly ceey an)a(pl)a(pn)s ai = é;—

(A21)

and for definition of coefficients k, exist a system of the
algebraic recurrence formulas®

[ +...43,) —d' —...—allk,=9,,,...,9,), ky =1

(A22)
In this case, eqn (A18) be called the local integrable equation

if k, =P,(3,,...,0,)/Q(,, ...,0,), where P, @, polinoms
and Q, decompose on a linear factors.

Example A2. For an equation w, = (1 + ew)*w,,, we
have any generalization as:

_{ T+apw)
T\ T wg W)

2
) (Wer — §'(WWD)

P'(w)(1 +ap(w))*
P’ W1 +w,q' (w))

We + bp(w)(2 + ap(w))w,

(A22a)

where p, g are any functions (p’ # 0) and a, b are any
constants. Transformation operators as:
—, y—qw)+ Vln(l +buy=x

pw) = (A22b)

1 + b
define® a solutions of this equations from a solutions of the
heat equation u, = u,,.

The method of a study any nonlinear forms of a linear
equations for the equations as ay, + by, + ¢, + dy . =0
(where a, b, ¢ and d are any functions of a variables x, f)
after a substitute y = exp(yw + éw, + B,) give three types
of a nonlinear partial differential equations®® relative to first
and second derivatives in dependence from a relationship
between a coefficients a, b, ¢, d, v, 8 and 3. One of these
equations is:

a(yw, + Bwy) + b(’YZW2 + Bzwzx + 278w, W, + YW + Br)
=0 (A23)
After transformation:

u=-exp(yw+ Bw,) (A24)

we can write a linear equation as
au, +bu, =0 (A25)

Motion integrals® for eqn (A25) are:

S8 o - .
h=2 =2 I=x—2tha ' 2 A26
1=y T ey BTXTAR (A26)

New solutions w of eqn (A23) can be define from any
certain solution w using a transformation:

+Ba 7llnf(i I, 13) ex +Baw
= — w —
Y ot 1,42,43 PLY at
(A27)
Example A3. For a certain function f in eqn (A27) as:

fdy L Iy=L -1 (A28)

we can define® a new solution as

A\ — 1
= (7+85)  brw B+ Inl o + B

—2ba” ' (yw, + Bwy + t(yw, + Bw,)(yw, + Bwyy)
+ YWy + Bwi )] (A29)

Example A4. The general solution of the FPK equation for
dissipation in phase-sensitive reservoirs:

w_ ¥y a(xw) ax"w) a*w s
M— 2D -
o 2| ox P ax2+ wax M
(A30)
is given in Ref.*’. The stationary solution reads:
o ex [M*)c2 —2Dxx* + Mx™?
VDo mME T 2D - M
(A31)
The general solution of eqn (A30) is given by:
W= J wale ™~ /T e "By,
X (V1-e "x+e gy dg (A32)
By means of the transformation xo=e "2'x—
Vv 1 —e~""'3 we obtain:
= JG(& Xos HWa(xo) dxg (A32a)
where
_ —{(y/2)
G, X0, 1) = W), = T (A32b)
l—e™ 7" l—e-¥
gives the Green's function. For ¢ = 0 we get:
wlx,1=0)= ‘.Wa(-x)wsl(ﬁ) dB=w,(x) (A32c)

since wyg is normalized.
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Appendix A.3 Case A3: Principle of superposition for
solution of nonlinear partial differential equations

The theory of a linear equations on a semimodular lattice is

described in Ref. %, On basis of this theory, it is possible to

introduce a new principle of superposition of nonlinear equa-

tions solution. For example, consider the heat equation:
du_h 8%u

E—EB-E,XER’ t>0 (A33)
X

where £ > 0 is any parameter. Linear combination
u= )\1141 + )\2"2 (A33a)

of the solutions u;, u, for eqn (A33) is also a solution of
eqn (A33). If introduced for eqn (A33), the nonlinear
transformation:

,t
u:exp{ - w(z )} (A33b)
then define the nonlinear equation
aw  1/ow\?> ho*w
—+ = =] ~z=—=5=0 A34
Bt+2(6x> 2 0x? (A34)

as the so-called Burgers equation [see also a particular
case from eqns (A17) and (A17a)]. In this case, a solution
ufi = 1, 2) of eqn (A33) equivalent to a solution w; = —
hlnu; (i = 1, 2) of eqn (A34). Then for a linear combina-
tion ¥ = Nu; + Mu, of a solution of eqn (A33), define a
corresponding solution of eqn (A34) as:

w= —hln(exp{ ), (_Wf’”)}),

wi=—hln\; (i=1, 2)

where p;= —hlInX; (i=1, 2). Thus, eqn (A34) is also a
linear equation, but in the function space where a semi-
group operation introduced as: (1) operation of the ‘sum’
a@® b= —hln(exp{ —a/h} +exp{ — b/h}); and (2) the
operation of ‘multiplying’ a®X = a + A. Then the
substitute w = — hlnu transfers 0 — © and 1 — 0.
Thus, a semigroup ‘0’ in this new space be «:0 = o« and
a semigroup ‘1’ is a usual 0:1 = 0. The function space with
the introducing operations @ and © and adjoint to this
space a zero ‘0’ and a unit ‘1’ is isomorphic to a usual
function space with a usual operations of multiplying and
summation.®®

In function space with values in a ring with the
operations:

a®b= —hln(exp{:h—fl-}+exp{:ﬁé}>,
ANOb=A+b

introduce a scalar multiplying

Wi, wy)= —hln I exp{ - ﬁ%ﬂ} dx (A36)

This scalar multiplying in this space possesses®® bilinear
properties:

(@@ b,c)=(a,0) D (b,c), A\Oa,c)=NO(a,c) (A37)
A self-adjoint operator in this space

"2 e
L:w—>w®(—-hln<(:2) —%)) (A38)

In this case:

(Wi, Lwy) = (Lwy, wy) (A39)

As a resolving operator for the Burgers equation, define as
L wo— w, where w is a solution of eqn (A34) with initial
condition wl,_y=wy. The solution of eqn (A33) with
initial condition ul, . =uq defines as:

_ 2
\/;EJ exp{ — (xz fh) }uo(z) dg (A40)

Then (w = — hlnu) the resolving operator L, for the
Burgers equation defines as:

B 1 =" wol)
LrWO——hln(——\/z—ﬁ exp{— 2+h + h }ds)

(A41)

The resolving operator L, is a self-adjoint operator in this
space relative to a new scalar multiplying:

(Adla)

For & — 0 the Burgers equation, 2w, + (w,)> — hw,, = 0
transfers in the Hamilton—Jacobi equation:

a5 1/08\?
5t 5(5;) =0 (A42)

(w1, Lywyp) = (Liwy, wy)

The operation ‘summation’ a @ b= — h In(exp{ — a/h} +
exp{ — b/h}) for h — O transfers in operation a @ b =
min(a, b). The operation ‘multiplying’ independent from
h is, therefore, as before: aON = a + \.

Appendix A.4 Case Ad: The FPK equation and the
Schrodinger equations in Nelson’s stochastic mechanics

In Nelson’s stochastic mechanics the Schrodinger equation
is derived from the classical Newtonian mechanics by pos-
tulating a particle moving according to a some diffusion
processes. The FPK equation for the stochastic process
can be interpreted as an equation describing the amplitude
of the Schrodinger equation for the wave function. A
quantum-mechanical description of a class of stochastic
optimal control problems is investigate in Ref.’’. Two ver-
sions of a nonlinear Schrédinger equation are derived. The
FPK equation is presented for a diffusion process described
by the stochastic differential equation. A stochastic optimal
control problem associated with this Markov process, and its
Bellman—Hamilton—Jacobi equation for dynamic program-
ming, is studied. A function called the wave function is
introduced which combines solutions of the FPK equation
and the time-reversal Bellman—Hamilton—Jacobi equation.
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This wave function satisfies a nonlinear partial differential
equation similar to the Schrodinger-Langevin equation in
quantum physics. The key idea stands on the wave-function,
defined by Nelson as:

Yx, 1) = /p(x. 1) exp{iS(x, 1)} (A43)

where p(x, t) and S(x, 1) are the solutions for the FPK
equation and the Bellman—Hamilton-Jacobi equation,
respectively. The equation:

BS(x 3]
T

asee, O\ T
o

X NGO (952);—”) (Ad4)

where v and » are positive constants and N(x) is an (n X n)
positive-definite symmetric matrix, and may be viewed for-
mally as the (time-reversal) Beliman—Hamilton-Jacobi
equation for the control process:

dé() =bE(M)) dr+u(r) dr+ G(E(1)) dw(7), 0 7=t
(A45)

with the feedback control u(7) = u(7, £(7)) and the cost
functional

=LyS(x, £) — voc(x) — V(

1
J(w) =M, {SolE(M] + _[OL[T, £(7), u(n)] dr} (A46)

with L(1,x,u) = 1/4u"™N - "oou — voc(x) and b(x) = [b(x),
,b,(x)]". The FPK equation:

ap(t, x)
ot

with p(0x) = po(x) defined for diffusion process that is
described by n-vector It6 stochastic differential equation:

dx()=f(x()) dt + G(x(1)) dw(), 0<r=<T (A48)

Indeed, the Cole—Hopf transformation v(t, x) = — In p(t, x)
change [eqn (A47)] into a (time-reversal) dynamic program-
ming equation for v(z, x) of the form eqn (A44) with »y = 1,
y=1/2 and N(x) = G(x)G (x). If p(#, x) is the solution of the
FPK eqn (A47) and S(¢, x) is the solution of the Bellman—
Hamilton—Jacobi eqn (A44), then the function y(¢, x) defined
by eqn (A43) satisfies the nonlinear Schrédinger-like equation:

6¢(t x)

= (Lo + c(x))p(t, x) (A47)

=[Lo+ Ulx; ) (2, x) (A49)

with initial conditions, (0, x) = \/po(x) exp{iSy(x)} and

1 /9. .
Ux; ¥)= 5( 1 - 2ivg)c(x) + §<5;1m// {, x)) GG (x)

V(1 x)
(—1"‘0 (hx )> ( fn xb(zx))

X (GG (x) — ivN(x)) (—1 ‘i((t' ;)))

(A49a)

where ¥"(z, x) is the complex conjugate of ¥(z, x) and
S@t, x)=1/2i In (Y™ (¢, X))(Y(t, x)).

If the function w(x) is the nontrivial solution to
am(x)/ox + by(x)w(x) =0 with by(x)={ G(x)GT(x)]_'B(x)
[B(x) is the diffusion coefficient in the FPK eqn (A47)]
then the transformation (¢, x) = /(w(x))¥(¢, x) satisfies:

Wot,x) 1 f xafa\" .
= [—itr{G &(£> G(X)}+U0(X,\1/0)]

X Yolt, x) (A50)
with

1/9. .\ T .
Ug([,x)z E(all’l\p > G(X)G (x)(alﬂ 1}0)

s\ T
_ %(%m %) (GGT () - ivN ()}
a ¢8>
In A50
< v (A50a)

For the scalar case eqn (A50) reduces to:

3%(’7/\7) a ‘I'O( s X )
at x ax?

which is just the nonlinear Schrodinger equation if the time
is formally replaced by the imaginary time #ih. A type of
this nonlinear Schrédinger equation with a complex ran-
dom nonlinear potential is known in quantum physics as
the Schrédinger—-Langevian equation as in the case of the
Doebner—Golin equation,®®’° where the potential Ug(x;y)
has the form (ieAy/ + iBIVYI*/IyI1%). If in the FPK eqn
(A47), introduce the transformation p (¢, x)=w(x)~ p(t x),
then the function p (¢, x) satisfies the linear differential equation:

T
2 [ofo 2 oo} e

(AS52)

+ Up(x; Yo)bo(t, x) (A51)

where

W= - > {GTabO(x)G( )}

- %bg(x)a(x)GT(x)bo +c(x) (A52a)

If G(x) = constant = G, then W(x) is given by
Wix)= 1/2[df(x)/6x+G 22 (0)].

Let fix) satisfy the Riccati equation for given function
r(x):

af(X)+G 220 + Hx) =0

(A52b)
then W(x) becomes as W(x) = r(x)/2. Thus, eqn (AS52)
reduces to the imaginary time analogue of the Schr
6dinger equation with the given potential r(x)/2, i.e.:

api(x) _ 8p, X) 1
Yy =a Py r(x)p|(t x), a= 2G. (AS3)
For flx) = 0, eqn (A52) reduces to the familiar heat

equation. If g(z, x) = — 2Ind/axp,(t, x), then this trans-
forms eqn (AS53) into the one-dimensional Navier—Stokes
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equation.

aq(t, x) oq(t,x) _ ar(x) ta ¥q(t,%)

ot o o ax?
In the case where the potential r(x) is zero, eqn (A54)
reduces to Biirger’s equation.

Consider the following nonlinear FPK equation:”"

+ aq(t, x) (A54)

3
P L 9j=0: j= — B2p(1 + kp)VU + Vp] (A55)

at

where U(t, x) is a given arbitrary function, B is the diffusion
coefficient, and k € R. The introduction of the factor 1+ «p
has its origin in the presence of the exclusion—inclusion
principle and allows us to take into account many particle
quantum effects. The transition probability from the site x
to x' is defined as PEtx—x") x)=r(tx,x)p
(t, O[1 + kp(t,x")] with r(z, x, x) as the transition rate. If
k > 0, P(t, x — x') introduces an inclusion principle, and in
the case where x < 0, the P(t, x — x') takes into account the
Pauli exlusion principle. In Nelson’s stochastic mechanics,
the forward and backward velocities v{* ) = — 2BV U'*’
(U™ = U) and the FPK equation will thuq give us:

%’;:V[vp(l +kp)]=0,v= E[v‘+>+v<->] (A56)

For v= V£, we obtain V¢ = j/p(1 + kp) and the nonlinear

Schridinger equation with B = h/2m and p = ly|? described
from the FPK eqn (A56) as:
L h?
fh—— - —A’Jl + Vi + [W(p) +iQp. NIV (A57)
with
h2 2—xp (Vp)
Wi(p) = Ap p (Vp) ;
“am 14+«p 2p (1+«p)
h pJ _ ok
op.j)= —K—V( 1 +xp) V=E—-m Y
2
- lm(\7£)+m)32 [A—”— 1<@) ]
2 p 2\ p
Ap 2—xp (Vp)
— xmB?
m { 1+«p 2p (1+«p)? (57a)

For the transformation eqn (A43) the eqns (A55) and (A57)
can be written as:

(AS8)

—+ QS)—+v+vq(p)+W(p)-—

5 (AS9)

where Vy(p) = - (h*2m) Ap”1p'” is the Madelung—
Bohm quantum potential. Eqn (AS59) is a generalized
quantum Hamilton—Jacobi equation and can be obtained
in the frame of a classical stochastic process with B =
h/2m.

Example AS. The FPK equation as in the form {eqn
(A3):

ow  w af (x)w

RGN, it ald Al

at ax? ax (A60)
describes the diffusion in an external potential

Ux)= — ZJf(x) dx (A61)

If to define ¥(x,7) = e"2fx) then eqn (A60) is modified
to the Schrédinger equation:

v B\If
h — (" +HY

On other hand, if in the diffusion equation with the space-
dependent diffusion coefficient

0¢ ot
Y ax( ()'—) (A63)

(A62)

changes the scale of the space as

dx
0 \/B(x)

then eqn (A63) becomes

o 0%t 0%

S5 B bl

a-axtt (dX (x)) axX (A65)
In addition, eqn (A60) is transformed into:

o 621, on

Franl v e (A66)
where

7, ) =e"wix, n (A66a)

From eqns (A66) and (A66a), we find that eqns (A60) and
(A63) are equivalent. Moreover, the square root of the
diffusion coefficient in eqn (A65) corresponds to the sta-
tionary solution exp[ — U(x)] for the FPK eqn (A60). The
more general form [eqn (A3)] also reduces to eqn (A63) or
eqn (A66) if the scale of x and £ is adjusted appropriately.
A connection between the Schrodinger equation and the
FPK equation was studied also in the referenced paper.”



