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Part 2: methods of statistical moments, statistical
linearization and the FPK equation

S. V. Ulyanov®*, M. Feng", V. S. Ulyanov® & K. Yamafuji®

*Department of Mechanical and Control Engineering, The University of Electro-Communications, Chofu, Tokyo 182, Japan
*Department of Civil and Environmental Engineering, Engineering Gateway E4139, University of California, Irvine, CA 92717, USA

In this, the second of a two part paper, the applications of the Fokker—Planck—
Kolmogorov (FPK) method to stochastic analysis of time-variant nonlinear systems
are considered. A new class of dynamic systems with stochastic nonlinearity and jump
parametric exitations is introduced. The comparison of accuracy of different statistical
methods such as statistical linearization is discussed. © 1998 Elsevier Science

Limited.

1 INTRODUCTION

In Part 1 of this paper,' a stochastic analysis of time-
invariant nonlinear systems subjected to random linear
and nonlinear parametric excitations was conducted on the
basis of the FPK equation. In this paper (Part 2), two types
of time-variant nonlinear dynamic systems are considered:
(1) dynamic systems with stochastic nonlinearity; and (2)
dynamic systems with random jump parameters or a sliding
mode in present of noise. Random change of charactistics is
considered as: (1) a stochastic event that does not depend on
phase coordinates of the system; and (2) a function of phase
coordinates of the system. The time-invariant dynamic
system is obtained as a special case in which the change
of characteristics has a zero probability for one random
realization of motion. These two types of dynamic systems
can be united on the basis of a common mathematical tool
for statistical analysis of parametric systems.'

For engineering probabilistic analysis of complex non-
linear systems, different mixed (hybrid) methods are
used.""! In Part 1, the exact solution of the FPK equation
is obtained on the basis of asymptotic analysis of the non-
linear dynamic behavior of mechanical system with para-
metric excitations. In this paper, applications of the FPK
method to stochastic analysis of time-variant nonlinear sys-
tems are considered. A new class of dynamic systems with
stochastic nonlinearity and jump parametric excitations is
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introduced. A comparison between the method of statistical
linearization® and method of statistical moments*'? are
performed.

2 STATISTICAL ANALYSIS ON THE BASIS OF
STATISTICAL LINEARIZATION
Consider a nonlinear dynamic system as:

X+ 2Bpx + F(x,x,%) = (1) )

where

F(x, %,%) = Qx + gg% + vox° + 2kx(xk + 1% )

According to the method of statistical linearization, the
nonlinear function in eqn (2) can be presented as:

F(x, x,5%) = Fo(m,, vy, iity, 0%, 0%, 0%, R 3)
+ Ky, ooy R)X" + K pimy, .., R)E®
+Kigm,, .., R)x 3)
where
Folm,, .., Ry;)= (szx + 'yo(mz + 3Ufmx)

+ 80(”'1;(’".3 + mra_z)
+ 2x(m§ﬁ1x + ofir'zx +2m.R + mxn'zi

+ mxo,%)
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oF, .
Ky = a_.(l = QZ + 370(’"3 + 0'3) +2eori m,
mX

+ 2k(2m i, + 2R + 1 + 02);

oF,
Ki= 2= ey(m? + 02) + dxrinmy;
arin,,
oF,
K= —2=2k(m] +o2);
o,
Ry=— Ug

Suppose that
x=mx+Xxy

where x° is a centered stochastic process with zero mean.
Substituting eqn (4) into eqn (1), one obtains:

1 + 280ty + Fo(my, vy, i, 07, 0%, 03, ) = vm, (1)
(5)
and
24 2808 + ko + k8 + gy = v’ ©6)
In a stationary regime where, m,(f) = constant and
m, =m, =0, eqns (5) and (6) become:
szx + ’Y()(mi + 3crfm,) — 2Km,a§ =vm, (@)
2B + ky; k v
-0 0t Kix.0 Ix 0 0
+ = 7 8
S T P ®
where
kye = + 3yo(m; + 07) — 2k03; ki = £o(m; + 03)
(8a)

Example 1. A stationary random process 7(¢) has a power
spectral density S, (w) = (62)/(7) (BY/((8* + w?)), where the
parameters 0,2,, @8 are of arbitrary real constants. From eqn
(8), one obtains:

18

[B(1 + ki) + (280 + k11))
1x {(KiclBhyi + (2B + k1)1 + B(2Bo + ki )BU + ki) + (285 + ky5)])

2
a; =

Ed

PR By
U ki tkg Bk + (280 + k)1 B(Bo + ki )IB( + kix) + (2B + ki)
)]

Therefore, the following nonlinear algebraic equations are
obtained for calculating m,, af and a?r:

Dm, + yo(m} + 307m,) — 2xm, 0} = vm, (9a)

o ' [B(1 +kyz) + (28 + k1))

Reuy Lk [Bkis + (280 + kix)] + B(28o + ki) [BQ + kix) + (280 + K, )]}

(9b)

0 1 2 3 4 5 oo

Fig. 1. Graphs of relationship uf =f (0,2, ).

Pmg?— o Bkix
T ey (kg By + (280 + k1)1 + B(Bo + ki) [B(L + ki) + (280 + Kyl

(%)

ki, =@ + 3yo(m? + 07) — 2k03; kyy = £o(m? + 02)
(9d)

Eqns (9a), (9b), (9¢) and (9d) are obtained using the suc-
cessive substitution and graphic methods. In case m,(t) =0,
one finds m, = 0 and ¢, and o? are obtained from eqns (9b)
and (9¢). The coefficients k,,, k;; and k;; become:

ki = Q% + 37002 — 202, ki = 8002, kiz=2xka>  (10)

Fig. 1 shows o? as a function of aﬁ based on eqns (9a), (9b),
(9¢), (9d) and (10). Curve 1 represents a nonlinear system
with parameters 8o = 0.2; Q% = 25; £, = 0.5; Yo=02, k=
0; and 8 = 10. Curve 2 represents a linear system with £¢ =
Yo = k = 0. The presence of nonlinearity in eqns (9a), (9b),
(9¢) and (9d) restricts the increase of the vibration ampli-
tude under external excitations.

3 METHODS OF STATISTICAL MOMENTS AND
FPK EQUATION

Consider dynamic system described as

x=F(x,t)+ Fy(x,t)y (11)
where x is output, 5(?) is a white noise with zero expecta-
tion, and F and F, are the nonlinear functions. Denote M as
the symbol of expectation and x™ as the mth moment of x.
Since:

d d dx

—M[X" =M | —x"| =mM ¥ = 1

a1l [d: } [ dt] (12)
Substituting into eqn (12) the value of dx/dt from eqn (11),
one obtains:

d—dt-M[x'"] =mM[X" " F(x, )] + mM[x" ' F\(x, )]
(13)

Remark 1. This pertains to a logical connection between
the method of statistical moments and the FPK equations.
Consider a series of infinitely short rectangular pulses along
the time axis, statistically independent of each other.
Assuming that the increment of the stochastic output pro-
cess Ax(r) caused by the effect of an instantaneous ‘pulse’
of white noise 5(¢) is small. In this case, the second term of
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the right-hand side of eqn (13) becomes:

mM[x" "' F\(x, yp) = mM [(x{,"“ +(m— Dx 2A%)

X {F](XO, t) + MAX}”]

axo

OF | (xg, f

—mM[ 'Fl(xo,z)n+y"—‘¥

X0
OF, (xg, t
+(m—l)xf)"'zFl(xO,t)Axn-f-(m—-1){0"_2—'6(;0—)
0
X(Ax)zn] (14)

where x, is a component of the output process independent
of x(t) which is caused by proceeding ‘pulses’ of white
noise and x = xo + Ax(f). Since Ax(f) is small, (Ax)2 may
be neglected. Thus:
mM[x" " Fy (x, 0]
1 9F(xo, 1)
on

X M[Axn] (15)

=M[mx{)" +m(m— 1)x6"‘2F|(xO,t)]

The value of M[Axy] can be easily found from eqn (11).
From eqn (11) one obtains:

t+ At t+ Ar
Axr= J F(x,7)d1+J F\(x, T)n(7) dr (16)

After multiplying both sides of eqn (16) by 5(z) and aver-
aging over the set for Ar — 0, one obtains:

%
M{Axn) = IF (x.1) an

where 0,2, is the spectral intensity of the white noise. Then
eqn (13) takes the form:

d, -1 9 9F (x, 1)
aMlx]—M[m,\"' (F(x,t)+ 2F](x,z‘) o )}

+M

2
mim— 1) Tngm-2p2(y. t)] (18)

The equations derived can be used for an approximate cal-
culation of the probability density function by representing
it with an approximating series. The unknown coefficients
can be found by substituting an appropriate series into eqn
(18)."2

Substituting into eqn (18)

%M[xm]=0,F1(x, N=LFxH=-F(x1

one obtains

Ml:x”'_2<xF(x)— “—’2'(m—1)>] =0 (19)
> =

It is obvious that if the positive values of xF(x) are finite,
there always exists some value m which makes eqn (19)

meaningless. When F(z) is approximated by a sign-
changing power series, eqn (19) may have a solution for
any m as long as the last term of the series is positive and
contains z to an odd power.

On the other hand:

ap(x 1) dr

d m_d oo
EM[x]——[ x’"p(xt)dx J py

dt
(20)

where p(x, 1) is the probability density function of process
x(¢) as in part 1. For an arbitrary and differentiable function
®(x, 1), the following equation is given:'?

I X k®(x, Np(x, ) dx

= J o
e " [ ®(x, t 1)] dx
= T ) o 3 0 1]
2n
By integrating the left side of eqn (21) by parts and
considering

: m—i ai .
lim x é;[tﬁ(x, Hp(x, )] — 0 (21a)

Ixl—0

we obtain

[l sfee
2

ay oF,(x,1)
+ EFI(XJ) ax )P(x’t):|

2 .2
— B R pp(x, 1] § dr=0 @2)
2 g2 1P =

eqn (22) should be true for any possible value of m only if

pl) 8 : 9F ) (x, 1)
o ——a{[(F(X,T)‘*’—F]( X, ) ox ):|

2 62
X plx, ) + 2 AL Dp(x, )] (23)

eqn (23) is the FPK equation in which the coefficients of
drift and diffusion are expressed directly through the char-
acteristics of the nonlinear dynamic system in eqn (11) with
the parametric random exctiations, (see Part 1 of this
paperl).

Special Case. For 0F/0x =0, eqn (23) becomes

aplx, 1)
ot

2 02
2[F.Z(x, Hp(x, 1]
(24)

In this case, the wide band disturbances acting on the
dynamic system of eqn (11) do not result in any variation
in F(x) that are correlated with them.

= — —-[F(x, Hp(x, 1] +

Example 2. Consider a dynamic system described by the
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stochastic differential equation:
X+yi+ F(x)=n() 25)

For simplicity, we assume F(x, f) = — F(x, t) and intro-
ducing the symbols: x = x|, x, = x,. Eqn (25) is rewritten
as:

Xy =Xz, Xy =n(t) —yx; — F(x,) (26)
The rate of variation of the product moment M[x}'x}]is:
d ~1 adx _dx
st =t | [y 52
27

Substituting into eqn (27) the value of the derivatives from
eqn (26), one obtains:

MO = mMO )
— YMIXT K] — nMIXT ™ Fx))
+nMIxTx; ') (28)
Write the last term in eqn (28) in the form:
nMIXTx3 ™ '] = nM(xX7xg; 'n)
+n(n — DMIxTxG; *IM[Axyn]  (29)

where xq, (as the component of x, not correlated with and
Ax,) is the increment caused by the effect of an instanta-
neous ‘pulse’ of white noise. Since:

2

MiAxyy) =21 30)
one obtains

d

MU =mMIxT ™ ] — M)

— nM[x7x;  F(x))]

+n(n — 1)‘§M[x’rx§‘2l &)
For the stationary mode (if it exists),
%M[fl"x’z’]=0 (31a)
Assume n = 0, then from eqn (31) one obtains:

M5 =0 (32)

i.e. x; and x, are independent at concurrent moment of
time. If m = 0, then:

2
YMI] = (n — 1) %M[xz ) (33)

This the moment of x, are linearly interrelated. When n = 2

)

o-

2
Mig]=d}, = o (34)
From eqns (33) and (34) one obtains:
M5} =02 =(2m — 1)o2 02! (35)

0 02 ;1.4 0.6 0.; [}
Fig. 2. Graphs of relationship o2 = f(oﬁ =0,).

eqn (35) can be used to calculate the moments of x, of any
order.

Considering that x, and x, are independent at concurrent
moments of time and assuming that m = n = 2I-1 and
d/dtM{(x,x,)* ~1] =0 in eqn (31) and the odd moments of
x; and x, are equal to zero, one obtains:

o2 oy — o2~ UM(a2" " F(xp)] =0 (36)
Using eqns (33), (34) and (19), one obtains:

2
o
Moy Fx)] =2(m — 1) 550"~ (37)
ZUEI
When function F(x) decreases more rapidly for Ix| — 0, the
stationary solution of the moment equation devergents.'?

Example 3: System Linearization. For dynamic system
in eqn (25), assume:
35
F(x)=sinx=x 3!+5! (38)

eqn (37) for this case becomes

1 1
2m 2(m+1 2(m+2 2 2(m—1
le - —!O'If )+ -!Uxf )~ (2m— 1)01 O%I( ),

2
2_ %
o= 3y €2y
Neglecting M[x}] and M[x!°] and M([x}?] in eqn (37), one
obtains:

5
11— 6012

o =0 (40)

4 1
1- 50,2 + go;‘
where 0,2 is the output dispersion of the corresponding
linear system.
Expanding eqn (40) in a series in powers of o} gives:

1, 13
0% = 0] + H01) + S0} + . 1)

eqn (41) is the same as the solution obtained using the
method of functional series.”!?

Fig. 2 shows graphs of the relationship af] =f (0,2), con-
structed, respectively, according to the formula of
linear theory (curve 1), the method of functional series
(curve 2), statistical linearization (curve 3), eqn (40)
(curve 4), and the FPK equation from Ref.! (curve 5). A
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comparison of these curves indicates that for a system with-
out parametric excitations all the methods >'? give approxi-
mately equivalent results over quite a wide range of
variation of 0,2

4 STATISTICAL ANALYSIS OF DYNAMIC
SYSTEMS WITH STOCHASTIC CORRELATED
NONLINEARITITES AND RANDOM JUMP
PARAMETRIC EXCITATIONS OF STRUCTURE

As mentioned in Section 1, two types of time-variant non-
linear dynamic systems are considered: (1) dynamic sys-
tems with stochastic correlated nonlinearities; and (2)
dynamic systems with random jump parameters or a sliding
random noise mode. A random change in characteristics is
considered as: (1) a stochastic event that does not depend on
the phase coordinates of the system; and (2) a function of the
phase coordinates of the dynamic system. The time-
invariant dynamic system described by eqn (11) or eqn
(25) is obtained as a special case in which the change in
characteristics has zero probability for one random realiza-
tion of motion. These two types of dynamic systems can be
united on the basis of a common mathematical tool for
statistical analysis of parametric systems.'

Applications of the FPK method' to stochastic analysis of
these time-variant nonlinear systems are considered.

4.1 Case 1: dynamic systems with stochastic correlated
nonlinearities and parametric excitations

Consider a class of dynamic systems described by the
stochastic differential equations:

d.x n
- = > (D) + 2uOIFx, @t)) + Ni(1) 42)
i=1

where ay(f) is a function of the time; Fy(x, a(r)) is a
nonlinear function of vector variables x(z) and «(?); a(?)
is an n-dimensional random vector process describing
stochastic variation of parameters in the nonlinear function;
zZu(?) is a random parametric excitation; and Nk(¢) is a
random excitation. The random functions z;(f), a(f) and
N(t) are &-correlated Gaussian processes with means
{zu(®), (a(t)) (N(D) and 1nten51ty coefficients G, (1),
G*(), Gk 1), k,pq(t) Gk,p(t) G‘,f,p(t) A generalized case
is considered where stochastic processes zy(#), a(f) and
N(t) are random correlated processes.

In accordance with the method of stochastic linearization
(see Example 1), the stochastic nonlinearity in F(x,a(?)) is
defined as statistically equivalent series:

Fu(x,a) = Fo + Z Kl(c};xo Z K/(j; 2 43)
q= q=

where K" and K@ are statnstlcally equivalent gains on
centered components x,, and o’ respectlvely The calcula-
tion of gains K'” and K® is given in Ref.2.

Define:
K0 = Fou+ Z Kiigxg (44)
9=

The coefficients of drift and diffusion, A (¢, x) and B¢, x),
in the FPK equation are defined as:'

A= Jim "&i{iﬂ;
By(t,x)= Aljl‘ MAA?D(_ ] 45)
From eqns (42)—(44), one obtains:
n At
Ax, = Z J', [(@r(7) + GO + g HF P (1))
i=1
+ Z Kag+ S K J (g E) + (2 E)

pg=1

+ 2 (ONF D) + Z K2l + (N, (£))

r=1

1+ At
+Np(§))) di} dr+ J (N() + Ne(r) dr;

t<T<t+A (46)

Calculating the conditional expectation in eqn (45) gives:

Adt,0) =D [ay® + @) FP @)
=1

Z K KD (a0 + euNGCS,
l p.gr=1

+ (@pg(1) + 2oy (ONGE) + Z Ky G,
lq

(1) (1) (1) 2
2 Z- KklpG’dp Z K 1(?q ()Giipg
Lpg=1 lpq—l

F+H N (D) k=1, 2,...,n) (47)
Calculating the product (Ax;Ax,) from eqn (46) and sub-
stituting it into eqn (45) results in:

n

D (@D + (a0

Lp,gr=1

+ e ONK Ko G

2By, (x, )=

+ D (@) + G ONKF PGS,

Lpg=1

+KGFPOGE)+ D (a,)

Lpg=1

+ o, (VK FD ()G,

+ K2 FYWGE) + Z FPWFPMG,,
Lp=1
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+ Z [(@u(®) + (e ODK GG

lLg=1

+ (@t + G (ONK G

+ Z [FR ()G, + FP0GH]+GE (48)
=1
When a(t) = 0, eqns (47) and (48) provide the same results
as those in Ref. From eqn (44) one obtains
OF i (x)/ox, = ,E,lp’ Coefficients of drift, A(t, x) and diffu-
sion, By,(t, x), defined in eqn (45), coincide with the results
obtained from the symmetrization integrals as in Ref.?.
Using the drift and diffusion coefficients of the FPK equa-
tion, the first statistical moments are defineded as:

Mx;] = mA = (Ak)

= (xkAu +xA,+ 2ka) (49)

M [xex,] = _tokv

and mixed statistical moments as

d
M[xr'x2 X = 3

vrn

n n n
= Z rk<Akxkl l_[ x,r,”> + Z r(re—1)
k=1 p=1 k=1

n
X <Bkkxk2 l—[ x;,">
p=1
n / n
<Bk»xk_lel nxpp> (50)
p=1

+ 2
k,v=1k#v

Example 4: Stochastic nonlinearity. Consider the

dynamic system described as:

%4 2Bk 4 Qx4 goF(x, ) = (1), (51)

where 7(t) is 8-correlated random process with zero mean
and intensity 0,2,; B0, Q% and &, are constant parameters;
F(x,x)=1/3 d/dte(t) and (1) is a stochastic nonlinearity
with conditional expectation and autocorrelation function as

-

m, =x R, (1) = crf,s(f)', s{r)=e ™ %"; af, = constant

When ai, =0, eqn (51) describes the system with nonlinear
damping: (1/3)eq d/dte(f) = egx’4.In accordance with the
method of statistical linearization, the stochastic nonlinear
function is defined as po(f) = ¢q + k1x° + . In the station-
ary regime ¢, = 0 (as the conditional expection is a sym-
metric function and the input signal has a zero mean),
ky —30 and eqn (51) becomes:

|-
¥+ (28 + 2007t + Px = (1) — 3e0¥ (52)
The variance of output motion is defined as:

, J‘m S, (w) + —sollwl Sy(w)
oy =
= (i) + 2B + eoeieo + P

(53)

Fig. 3. Graphs of relationship o2 =i (aﬁ, 0,2,).

For §;, = (a\zl‘oe)/(-;r((.)2 + oz2)):

o= 0
T QP28+ &90?)
B 21raioze(2)
9284 + £50D)[Q? + & + (2B, + £¢02)]
[9-1ra”((l2 +a’+ 2afy) — 21r0¢a809"} + 970, oxa%a
902(28 + £9o2) [P + o + a(28, + £902)]
(54)

For o} =0:

2
=B e, 6= TN (55)
0 BoQ
This is the output variance for the dynamic system with
nonlinear damping,.
Fig. 3 shows the plots of eqn (55) (curve 2) and eqn (54)
(curve 1) as functlons of 02 Curve 1 is for the case
‘p—] a—l Q —25 60—02 80—05

Example 5: Stochastic parametric excitations. Con-
sider the special case of stochastic nonlinearity as stochastic
parametric excitations. The product of two stochastic
stationary processes X ,(t) and X,(¢) is defined as output
¥(t) of a stochastic multiplier:

1) = kX, (NXx(1) (56)

The stochastic processes X (¢) and X,(z) are assumed to be
(special case) jointly Gaussian random variables with var-
iances o? and a%, correlation coefficient p and zero means.
The covariance matrix M whose elements are defined by
my; =MI(x; — m)(x; — m))] is:
o\loy P 0 Ao
] 0oy —N 0
M=o0,0, (57
0 ~-N 0o, Po
Ao 0 Po 0,/0

and its determinant is

Ml = 6{od(1 - pf - N = }a3(1 — p*)? (58)
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Fig. 4. Graphs of the probability density function for correlated stochastic processes.

where 92 =p3+)\(2) =1, which is the normalized cross-
correlation coefficient. The inverse matrix of M is:

02foy = po 0 =N
-1 1 —po oo N 0
- ai0(1—p»)| 0 N ooy —pg
N 0 —py ajo,
(58-a)

Then the probability density function of the multipliery
output in eqn (56) is defined.'*!®

1 exp 2(po—\/1—22) L y=0
kolal kO'lﬂz(l - )
pO)= 59
1 2Apo+ VI1-N)
exp 3 ,y<0
kG']G'Z kalaz(l - )
In a special case where k=1, ?=03=0" and \g=0:
L exp| - y=0
o 2(1 +p) B
Py = (60)
1 X [L] <0
Plea=ol”’

Fig. 4 shows the probability density function in accordance
with eqn (60), where curve 1 is for p =0, curve 2 is for p =
0.5 and curve 3 is for p = 0.95. For the correlated stochastic
processes X;(1) and X,(f)(p # 0), the probability density
function differs from the Gaussian (normal, p = Q) prob-
ability density function. The influence of the stochasitic
parametric multiplier on the statistical moments of the lin-
earized dynamic system output is demonstrated.

Example 6. This pertains to the correlation method for a
linear system with stochastic correlated parametric excita-
tions. Consider the dynamic system as:

X+ [2By +20a(O))x + QGL1 + 2ux()]x = va(t) 61

where a(r), x(t) and 7(¢f) are stationary d&-correlated

Gaussian (statistically independent) random time functions
with known statistical characteristics and zero means.
Rewrite egn (61) as:

%+ 2Bk + Bx = m(t) — 20a(H)x — 2uPx(Hx (62)

Fig. 5(a) shows the block diagram of the dynamic system
described in eqn (62). The solution of eqn (62) is assumed
as x(1) = xo(1) + x1(1), where xy(¢) is the solution of the
system with constant parameters subjected to the process
n(?), and x,(¢) is the solution of the system under parametric
excitations a(f) and x(f). Writing the equation of motion
at two time moments ¢ and ¢ = 7 and using the Duhamel’s
integral after averaging M[x(t)x(7)] for variance af =
R.(r=0)=M[x(f)x(t+ 7)] in the stationary regime, one
obtains:

o

ol j oK2(8) do

2= _ m )
1o} jokl(o)dowi Joﬁ‘l)(f)dé' Lém(n)dn Jok(9+n—l)k(l)a]
(63)
In a special case where ag =0
a, jo k2(0) de
= (64)
1-d2 J K*(0) do
where
03 =% o 24,204 80(r) = d5(t)
Tdr
k(r)= —e %7 sin Qy; 9, =1/ - B2; o2 =40?
1
(64a)

and &(¢) is the generalized Dirac function.
Using the probability density function Py (A) for the
stationary regime given in Part 1 of this paper:'

A A’
Dsii(A) = U—% exv(\ - m) (64b)



212 S. V. Ulyanov et al.

i) GD 1 Hq0
P +2B,p+2°
X

20a(t)

. % 200%1)

y()=gO)+m(t)+n(t)
I )

J0)
{20

ut) e
b

Fig. 5. Structure of linear system with random parametric excitations.

the second statistical moment {4%) can be defined as

A= FAZ (A) dA = r‘ﬁ - ﬁz- dA
- 0 Dt ) = 0 0% €Xp 20‘;_
2
B P A— (65)

2 (- 30
4
From eqn (64), one obtains:
2 [,
v J 0k (r)dr _ 2
20°(8, — Q%)

(66)

o=

(1 —4p2! L K(7) d7)

From eqns (63) and (64), the parametric random excitations
by linear terms x and X lead to the increase in variance of
the motion of the dynamic systems. Fig. 3 and analysis of
eqn (54) indicated that the random excitations in stochastic
nonlinearity lead to the decrease in the variance of motion.

Remark 2. In Ref. '®, the problem of decrease in the
resonance amplitudes due to random parametric excitations
in linear term x(¢) is discussed. The parametric excitations
are assumed of short durations. Eqn (54) shows a new pos-
sibility of the decrease in the variance of output.>’’

In general, the output of the linearized system with ran-
dom parametric excitations is described as:

1

x(t) =xp(t) + Joa(ﬁ)y(e)kxu(t —0)dé 67)

where k,,(f) is an impulse transfer function from point u to
point x in the block diagram of the dynamic system [see
Fig. 5(b)] and a random process »(f) = {x, X,...} has the
cross-correlation function R,(¢, §) with random process
a(t), and a random process a(f) has the autocorrelation
function R,(¢, #). From eqn (67), the mean m,(¢) and auto-
correlation functions R,(¢,, ;) of output x(r) are obtained
as:

m () = <x0(t) + joa(ﬂ)r(ﬂ)k,u(t -0 d0>

!

=m, (t)+ IDR‘,,(& Dk, (t —6) d6 (68)

and
1

R (t;, )= <(x0(t]) + Joa(el)u(ol)kxu(tl —6;)dé,)
X (xo(t) + Jo a(0,)v(0;)ky, (1, — 07) db, >

il
= Rxo(tl ’ t2) + ,[0 [Rxou(0, t2) + mv(a)Rxﬂa(Bv t2)]

{f]
X kxu(tl - 0) dé + ,[0 [cho(tl » 0) + m,,(0)

X R (t1, O) Ik (12 — 6) d
1)
+ J.okxu(tl - 01) d01

X JO [mu(ol)Rua(Bla 82) + mv(02)Rau(0] s 92)]

n

X ky,(t, — 0,) b, + ,[0 k() — 8,) d6,

n
X JO [mv(ol)mv(OZ)Rﬂ (01 ’ 92)

+ Ru(ol s 02)Ra(0] ’ 62) + Rav(ol » OZ)Rva(ol » 02)]
X kxu (t2 - 02) Cl02 (69)
where

h

Rav(tl > t2) = Ruvo(tl )+ JO Rau(oa t2)kvu(tl - 0) dé

1
+ _[0 m,(O)R,(0, 1)k, (1, — 6) d6 (70)

is the cross-correlation function of processes a(f) and »(¢)
and m,, and R/, t;) are the mean and autocorrelation
function of process »(f), respectively. The functions m,
and R,(t,, t,) are obtained from eqns (68)—(70) by changing
X to ».

Remark 3. eqns (68) and (69) is defined with the calcula-
tion of the third centered statistical moments as:
Rou(ty, 1) =Mla(t; W°(t))q(1,)] 1)

The value of cross-correlated function R,(t;, t,) is calcu-
lated under the assumption that processes q(f) and a(z) are
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random functions with zero means as:
1)

un(tl s t2) = J‘O [Ra(tl ’ G)qu(a1 12) + Raq(tZy B)Rva(tl ’ B)]
X k,,(t; — 8) df (72)
For g(t) = a(1):

1
Rau(tl ’ tl) = JO [Ra(t] H G)Rav(aa t2) + Ra (12’ 6)

X Rva(tlr 9)]kvu(tl - 0) dé (73)

The cross-correlation function R,(f;, ;) in eqn (72) is
defined as:

qu(’l » t2) =quﬂ(tl ’ t2) + J’O [mv(B)un(G’ t2) + un(o’ tZ)]

X k,,(t; —6) do (74)

Therefore, eqn (72) becomes:'”"'®

un(tl » t2) = JO [Rqa(ﬂ, tl )Rva(tl s 0) + Ra(tl » o)qu,o(o, 12)]

1

X k,,(ty —6) do + Jo R, (1), Ok, (1) —0) db

0
X JO [mv(T)Rqa(T, t2)
+ Ry (7, 1)1k, (0 — 7) d7 (5)

The central moments of the fourth order are expressed in
eqns (69), (73) and (75) through the statistical moments
of the second order under the assumption that random func-
tions are with the normal probability density functions.
Eqns (70)-(72) and (75) form a closed system of inte-
gral equations.

From eqns (68) and (69), it is demonstrated that the beha-
vior of means and autocorrelation functions in the linearized
system with stochastic parametric excitations depends on
external input excitations, random parametric processes
and the cross-correlation between input processes.

Special Case. If process a(f) = a is a random variable
with variance aﬁ and input processes are uncorrelated with
random value a, then:

03 Jo k., (0) dé ,[0 k(1) d7

m(t)= mXu(t) +m, (76)

1-302( L k,,,(8) d6)?

and

Sy(@) =S5, (@) +27Cy( L ko (6) d6)*5(w)

+0, {su(w)lduu(/w)P
S0 (@), (j0) B, (j0)
1 - 0§d>%u(iw)

st(wyb:u(iw)diu(iw)}
1 — 02®}2(jw)

an

where
C\ =m0, + R,,(0) +2m,R,,(0);
R,(0) =207 L k,,(6) dO (772)

and18
00

ﬁhmww

Ry (0)= my, (78)

1-303( JO k,,.(8) d6)*

In eqns (76) and (77), the first terms represent the statistical
moments in the system with constant parameters and the
second terms describe the change of statistical moments as
functions of parametric excitations. Calculation of the
third-order statistical moment indicate the dependence of
the statistical output characteristics from the correlation
between the frequency response of system and input exci-
tations.

Example 7. Consider a simple dynamic system described
as:

10 3 w2
:-————; = .4
)= o1y YW= T A
(79)

where ®(s) is the transfer function of dynamic system and
Sy(w) is a power spectral density of stochastic input pro-
cess.

Fig. 6 plots the output increment variance Ao,zc (pure
random parametric excitation) calculated using eqns (77)
and (78) with a§=0.1 (curve 1) and a§=0.2 (curve 2),
with the statistical moment of the third order. Curves 3
and 4 represented the results for ¢2 =0.1 and 0.2 without
the third statistical moment. Without calculating the statis-
tical moment of the third order as shown in the figure, the
increment of output variance is always positive. The calcu-
lation of the statistical moment of third order>'® gives both a
positive and a negative value of increment Ao>. This is
consistent with the result obtained on the basis of the FPK
equation in Part 1 of this paper.!

4.2 Case 2: nonlinear dynamic system with jump
stochastic parametric excitations

Consider a dynamic system described by a stochastic differ-
ential equation:

d_x n
5= 2 )+ 20 + ouln DIF@® + M) (80)
1=1

where a stochastic process ¢y(x, t) describes a stochastic
jump change of the characteristics of the system; processes
ay(1), z3(t) and N(t) are the same as in Section 4.1.

A random change of characteristics in the dynamic sys-
tem described as eqn (80) is a stochastic event that is inde-
pendent of the system motion. In this case, eqn (80)
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Fig. 6. Graphs of relationship Ao? =f(02): (a) block diagram of dynamic system; (b) output increment variance Aof(ai, 7).

describes the behavior of the dynamic system with possible
characteristics violations'® or with random change of
parameters.” Another case is that the stochastic change of
characteristics depends on the phase coordinate of system
output. Both cases defined as:

e1(0)
elx, )=

@20, Ixl =¢;
Consider the first case of eqn (81) when {x(¢);e(x, ) =
¢1(t) = ¢u(H}. The random process ¢y (x,t) has a final
number of value state ¢y (f)= {rpi})(t), gog)(t), ,..,<p§f,[)(t)}
and is subjected to the Poisson probability distribution
law. The probability p®(r) of transfer from state (a) to
state (b) in a time duration (¢, t + Af) is:

PP =P (A 4+ 0(AD; b # a(a, b= 1,2, ...,q);

(81)

P =1-“Un)ar+0(an; v = Y
b+a
. 0(A)
m =

lim ——

A—0 At

0 (82)
eqn (80) is a stochastic differential equation with jump
stochastic parametric excitations described as eqn (82).
The joint pair {x(7);¢.(?)} form the Markovian stochastic
process and all the probability characteristics can be eval-
uated using the FPK equation.?

The probability density function w(x, r) for vector x is
defined as

q
w(x, t) = Z w9 (83)

a=1

The FPK equation for evaluating w“(x, 1) is written (see
Appendix A) as:>*°

()
w'9(x, 1) = (L@ — @@y, @y ) 4 Z NI
ot b#a
(84)
where
- 9 1< &
L(ﬂ) — _ __A(ﬂ) - B(ﬂ) 85
k; axk ¥ + 2,521 Ixox K (85)

and function w“(x, ) satisfies the normalization condition

q
> Jw(”)(x, Hdr=1

a=1

(86)

In general, the system in eqn (84) includes m partial differ-
ential equations of the second order and it is possible to
obtain exact solutons only for simple cases.>*® For engi-
neering analysis, eqn (84) can be used to calculate mixed
moments or cumulants of the system phase coordinates.

Example 8. This pertains to the method of moments for
the statistical analysis of nonlinear dynamic systems with
random jump parametric excitations. Multiply eqn (84) with
x{'x2,...,xrand integrate it over the full phase space to
obtain the following system of equations for mixed

) _r(t) of order N as:

moment a7,
n
(A}:’)x,:' n x,r,”)la
p=1

n
p
l_[x,, la
p=1

n

Z’k

d
_(aifr)‘ ,....r,,) = {
dr 2 Py

+ D nlr— 1)<(B§‘,?;;,:2
k=1

n
+
kv=1Lk#v

n
X <(Bf:,',)xk_1)c,_I l_l x;”la> }p[“)(t)
p=1

+ 3 G, g
b#a

Tty

(a) ]

Firp Ty

(87)
N .
where z,zl r;=N > 0.The probability p*“(¢) that param-
eters of system are in state (a) is:
PO = J_axw(“)(x, 1) dx
and

P _
dr

(88)

=P+ 3 V) @=1,2,...,n
b#*a

(89
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with the initial conditions as p‘(t,) = pi. The solution of
egn (89) is subject to the condition of normalization as
@y _ 1
P =1
If () = constant (as, for instance, in safety theory),
then eqn (89) can be solved. In eqn (87), take into con-
sideration that:

T ry = Ln)x’w(“’(x, Ddx=a, ., ({lap' @)
(90)
and the absolute mixed moment is defined as
I Y- AR ) o1
a
If r; = 0 for i # k and r; = 1, then eqn (87) becomes:
d d
T =1 0= Emi“) =(A§(a)(!,x)|a)P(ﬂ)(1)
+ Z [V(ab)m}(b)(t) — V(b“)mza)(t)] (92)
b#a

where m; = {(x,) with initial conditions as

mO (1) =m® = Jka(()“)(x)dx (93)
For the second moments, r; = O for i # k, i # v and
ry=r,=1, it becomes:

d
a;ao. con=1,r=1,..,0=

i~

(a)
kv
={(x, A + AP + 2B layp (1)

+ Z [V(ab)gii)(t) _ y(ba)og)(t)] (94)
b#a

The initial conditions for eqn (94) are similar to eqn (93). In
the special case v = 0 from eqn (88), 1 = 1. From
eqns (92) and (94), eqn (49) is obtained. From eqn (87), egn (50)
is obtained.

Special Case. This case is a linear system with jump
stochastic parameters. A general class of linear systems in
which the variation of parameters affect both free and
forced motion can be described by the following vector
equation:

y=E@y() + D)) + C()x() 95)

where y={y(2), yz(r),...,y,,(t)}T is a column vector
describing the coordinates of an nth-order system; E(r) =
lE (D!l is an n X n matrix characterizing the free motion of
the system and is determined by its characteristics; £(¢) and
x(#) are vectors defining the random and nonrandom input
effects and having no more than n dimensions; D(t) =
D and C(r) = ICx()ll are matrices of a suitable
order characterizing the forced motion and determined by
the system characteristics. The vector £(7) will be consid-
ered to be a é-correlated stochastic process, i.e.:

(E)E (1) = IS, ll6(e, — 1) (96)

where S = [IS,,/l is the matrix of the spectral densities and T
is the sign of the transformation.

The random functions of time E(z), D(z) and C(r) may
assume only a finite number of values EV(#),....E™();
DY@),...,D™(t); and CM@),....C™(r) and are subject to
the Poisson rules. So the process y(f) is a rather complex
composition of diffusion process with Poisson transitions
between separate elements of the composition. The set of
¥, E(1), D(¢) and C(¢) forms a Markovian process, and
consequently all probability properties of y(f) can be pre-
cisely determined. In this case, drift A“) and diffusion B
coefficients can be determined for eqn (95) as:

A@ — E({')y+ C(“)x; B9 =D(H)SD(“)T (97)

respectively.The first moment function is determined as
m@) = [yw9(y, 1) dy=m(rla)p® and the probability
unconditional expected value of the coordinate y is deter-
mined by:

mny=0)= X m“() (98)
The ordinary differential equation for determing the value
of m(r) is:

fi’t(a)(t) — (E(a) _ t,(aﬂ))m(a)

+ > MO0+ C% (a=1,..,m)  (99)
b#a

with initial conditions

mP(tg) =mi’ = J yw(y) dy (99a)

The unconditional matrix of the second moment for the
system coordinate y is defined by:

K =K ()l =Gy =D K<), (100)

K90 =K o)l = Jnyw(”)O', 1) dy =K (tla)p'“ ()

where K(“)(t) is a system of second-moment functions and
the correlation matrix R(z) is defined as R(#)=K()—
m(m"(H).Matrix K is calculated from the following
equation®”

K@ = FOK@ 1 KOE@T | gy _ ek

+ D VKD 4 T COT 4 cOxm@T  (101)
b#a
The initial conditions for eqn (101) are found from the
initial conditions for the FPK equations for special case
¥(to) = yo, and parameters of system are in state (c):

K(t‘)(to) =)’()y(])-, K(a)(to)z() (a #c,a= 1, ’m)
(101a)
eqn (101) is a set of m[n(n + 1))/2 ordinary differential

equations that can be solved by the standard methods. In
Part 3 of this paper, the results of stochastic simulation and
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a study on the stochastic stability conditions for this class of
systems will be described.

5 STATISTICAL ANALYSIS OF TIME-VARIANT
DYNAMIC SYSTEMS ON BASIS OF FPK
EQUATION

A nonlinear dynamic system subject to external random
excitations is described by a set of stochastic differential
equations:

L=Fx0+ D ay®E® (=1, 2,...,n) (102)
j=1
F(x) are piecewise-differentiable and a; are piecewise-
constant.
The phase space x = (x, Xp,...,x,)" is partitioned by a
finite number of hyperplanes of the form:

{ex)=0 (103)

where ¢ = (¢y, ¢3,...,¢,)" is a vector normal to the hyper-
plane (104), and the angle brackets denote the scalar pro-
duct of the vector.

Continuity is upset only at a finite number of hyperplane
(103), where the functions in eqn (102) can have first-order
discontinuities. In the event £,(¢) are independent Gaussian
stationary white noise processes with M[£,(1)] = 0 and
M[£;(0)€;(t + 7)] = e(t)8(7) and eqn (102) can be analyzed
by means of the FPK equations for diffusion-type Marko-
vian processes. In this case, in each of the continuity of the
functions Fy(x) and aj(x), eqn (102) defines a multidimen-
sional Markovian process x(f)= {x,(1), xz(t),.‘.,x,,(t)}T,
which has a corresponding probability density w(x, r) satis-
fying the familiar FPK equation.

ow <} 1«
P IR

i=1 i Lj=1

62

i

where
1 - L 8au
AD=Fxn+5 Y > —Lag, (1052)
255 ox
Bjx,0)= Z Ak Ak E; (105b)
k=1

are, respectively, a component of the drift vector and an
element of the diffusion matrix of the multidimensional
Markovian process as in eqn (45).

The determination of the density function w(x, f) through-
out the entire phase space of the system involves the gen-
eration of boundary conditions to match the function w(x, )
satisfying eqn (104) in each of the domains set apart by the
hyperplanes [eqn (103)].

Remark 4. The boundary conditions have been derived in
Refs 2!"*? and given in a more general form in Ref.!” (see
Appendix B). The coefficients a;(x) in eqn (102) may be

constants throughout the entire phase plane or have first-
order discontinuities, depending on the specific flow dia-
gram of the dynamic system and the location of noise
entry. In the latter case, knowledge of the local character-
istics of the Markovian process x(f) on both sides of the
surface of discontinuity of the coefficients is inadequate
for determining the boundary conditions for eqn (104),
and instead it is required to analyze the behavior of the
process on the surface itself. Under the reasonable assump-
tion that w(x, ¢) does not have é-singularities, the matching
conditions®? have the general form:'’

D ciciAByw(x, 1] =0 (106)

Lj=1

—
X

div,

r

~ =D ¢ABwlx, z)]

j=1

NS

+ D A [A,w(x, fn— %%B,»jw(x, t)] =0 (107

i=1

where 6[f] =f(»=0,)—f(» = 0_) and div,[.] is (n — 1)-
dimensional divergence on the hyperplane [eqn (103)].

Eqns (106) and (107) are described in details in Appendix
B. The first condition [eqn (106)] represents the continuty of
probability density w(x, f) and the second condition [eqn
(107)] represents the continuty of flux density across a sur-
face of discontinuity described by eqn (103).

The FPK equation is also considered to be valid when the
pertubing influence is not white noise, but a stationary Gaus-
sian process with a rapidly damped correlation function
R(7), and with a sufficiently wide bandpass (the correlation
time 7, is small in comparasion with the setting time of the
transient processes). In this case, the stationary Gaussian
process may be replaced by equivalent white noise with a
correlation function R})( = szé(f), where sz = fgt Re(1) dr
and 79 may be approximately estimated from the following
relationship for a Gaussian process: >’

roc

To= 1/(Rf(0))J JRr(n) dr= (CHIR(0))

With the foregoing remarks in mind, it is possible to per-
form statistical analysis of time-variant dynamic systems
described by egns (102) and (103) for the following two
cases.

5.1 Case 1: dynamic system with jump irreversible
time-variant characteristics

Consider the definition of a probability density function
P(x,1) for a piecewise-linear system described by a set of
equations:

L
2,

dx dx, 2
x=x, @ —== —2ax; — w (x, Dx; + £(1)

dt
(108)
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Fig. 7. Phase plane of dynamic system with jump time-variant characteristics.

where

wi, until Ix;| < ¢q,

W 0=14 2, for byl = Vgl <y,  (108a)

(i=0,1,...,n)

and f{z) is white noise (R¢(7) = szé(‘r)).The surface of dis-
continuity egn (103) for eqn (108) is described as:

Ix,l=c (109)

The lines in eqn (109) are the switching line of the system
characteristics of eqn (108).

Remark 5. eqn (108) describes a class of time-variant
dynamic systems and provides the theoretical background
for designing seismic resistant structures with switching
couplings.>? In this case, by switching internal couplings,
jumping change of the natural frequencies of the structure is
achieved. The frequency accomplishes a random jump
h,—:w,ﬂ, —w,-z (“’z’2+l < w,g) of negative sign in a random
time moment when parameters of system motion achieve
or exceed any constant given in eqn (109).

For eqns (108) and (109), the FPK eqn (104) can be
written (w = p) as

aP a
L{P(xy, %3, )] = — T é‘;{sz}
3 ,
— —{[—2ax; — wjx||P}
ax,
C} a*pP
+ Tf@=o, until Il <¢;  (110)
and P 8
LIP(x), %2, )] = — o E{xzp}
4 2
- a—xzﬂ—zaxz—wiﬂxllp}
GoP_,
2 a3
for lx;l =¢; Vx| <c¢iyy (11

The phase space (x|, x) of eqn (108) with the logical

conditions of eqn (109) is divided into two domains as
(={}+{H)={x:0=<x; <¢;;0=1x, <>} and
2=} +{IV}={x: —¢<x=0;—0<x;=0}.
Fig. 7 shows these domains.

As an example, it is possible to consider a change of
system characteristics in domain / (see Fig. 7). The diffusion
coefficients Bj; of the two-dimensional process are discon-
tinuous on switching line x; = ¢ and the first condition of
conjugation eqn (106) can be written as:

Pt =P =P|(co, %3, (112)
where P* is a limit value of probability density function
P(x, t) when the value of x, approaches the switching line
[egqn (109)] from the domain x, < c¢,, and P~ is a corre-
sponding limit value when P(x, 7} approaches the switching
line from the domain x; = ¢,

The probability flux density for eqn (111) is:

Ci(oP\~
P 4+ =200 —wt, P+ L
X +[— 200 —wiypi6lP + 3 (axz) (113)
The corresponding flux for eqn (110) is
c? +
x5 P 4= 2ax0 —wlc)P” + L 9P (114)
2 ax;

Subtracting eqn (113) from eqn (114) results in zero.
Therefore, the second condition of conjugation can be
written as:

20x0,P (1 —2a) 2P cihy; aP\ "~ P\ *
2 = %) =\
c; & ox, 0x;

(115a)

or

aP\ - ZAXZ(I - 201) 2Cihi
Z) =p, | =200 2 A
(6):2) 2 { a e }Pl (115b)

where P, = (3P*)/(3x,) and Ax, =(x; —x; ) is the pro-
duction velocity of kinetic energy for switching internal
couplings of the system.

Remark 6. A generalized form of eqns (108) and (109) is:
X+ n(x, %+ o (x, Dx =£(1) (116)
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Fig. 8. ‘Restoring force—displacement’ for dynamic system with
jump time-variant characteristics.

where n(x, 1) and w2(x,t) are irreversible parameters and

wiz.;, until \xl| < Cp,

W= &2, forlyl=Cviyl<c,, (1172
(i=0,1,...,n)
Ry until |X1| < C(J,

nx, =4 n, for bgl=Cvinl<c,, (117

(i=0,1,...,m),

where, is and /s are the indices of initial and limit systems.

Figs 7 and 8 show the physics and calculation models of
eqns (116) and (117) that are described in details in Ref. 2.
The time-variant characteristics (an accumulation of local
destruction) are associated with specific parametric excita-
tions as in eqn (117).

Consider the perculiarity of the ‘restoring force—
displacement’ plot in Fig. 8. According to the energy con-
servation law, for part OA, E, =T, +1I, = (mvf + C,yﬁ)lz;
for part OC, E; =T, + 11, = (mv3 + C,y2)/2 and E, = E,.
Let v; = v + Av, then from the energy conservation law:

Avy= — x5+ /G + (hic,)? (118)

where ¢; = y, holds. At the time instant of coupling switch-
ing, additional kinetic energy is generated as initial velocity
and x; is changed in this time instant (x,(f) = ¢; = y,).
From the point of view of the qualitative dynamic system
theory, an additional increment of velocity in the initial

__ x5
@+ Lo+ 1)

Fig. 9. Block diagram of dynamic system with time-variant
characteristics.

conditions gives an instantaneous impulse on egn (116)
with a pulse height proportional to Ax, in the time instant
of coupling switching. The model [eqn (116)] also accounts
a possible change of dissipative forces in the time instant of
coupling switching.

In order to determine the probability density function
P(x,1), it is necessary to search for the solutions of eqns
(110) and (111) with the boundary conditions of eqns
(112) and (115b), and with natural normalization condition
as:

j_m J* POy, xp, 1) dxy dey = 1 (119)

The stationary probability density function P(x,, x;) is the
solution of the FPK eqns (110) and (111) for aP/dt = O:

2
C exp{ - C—Ogl[xﬁ + w(z,xf]}, until lx, | < ¢q
f

2
C exp{ — C—?[x% — Axy (255" + Axy)

P(x), x3) f

+w%x%+h,.c%1},

| for lx)l =¢; VixI<ecpy (=0, 1,...,0)
(120)

Now we present P(x, 1) (inside domains {/} and {/I} in
Fig. 7 separated by x, = cp) in the form of integrals from
P, and P; in eqns (112) and (115b) (see Appendix B). In
domain {7} (0 = x| < cp; 0 = (x; = §) < o)

P 0= | at | Fon D=0 an

- | ar [ 1P ico it
~EP1(0.£, 11 (0.£, 1)

1 Co
+ JO d7 JU { [wénqli’l 0, 7)

CZ
— 5P, T)Jq.(s =0)

G 9
+ TfPl(n,r)aig(kO)} dn (121

and in domain {/I} (cp = x; < ¢)

<)

Pl = |, dt Lf(n, £)ax(r=0) dy

r x
- ,[0 dr J‘O[EP](CNE,T)qz(Chg’T)

- EPI (C()v E’ T)qQ(O! £5 T)] d£

! “ cth
2 071
+ J‘O dr J’(O{ {(mm—Zai—sz+hlco)
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G
X Pyn,7) = S Pa(n7)| 426 =0)

+ C—sz (1.7 2 =0) (122)
2 1\, 7 E

where P(x1,x,,0)=f(x;, x3),andg;(x\,x,,t,E,7), and
q2(x1, xo, t, £,7) are probability density functions for a
Markovian process satisfying eqn (108) under the conditions
x € {I} and x € {II}, respectively (see Appendix B).

Using boundary the conditions of eqns (112) and (115), as
well as eqns (121) and (122), the boundary functions P,(x,,
1) and Py(x,, f) are determined as:

Py(x, )= L d§ Jc‘f(ﬂ,E)Qz(xl=Co,T=0) dn

1 00
+ _[0 dr Jo £P(co, £, T)qa(x) = co.n=cp) d
t Cy 2/1
+ Jo dr LO{ (won 2a2x+ +hycg)P(m,7)
c?
— e, r)] 4201 =c0.E=0)

C
fPl(nsT)_E'(xl—CO!E 0)} n (123)

and

Py(xz, ) = jo dg J S, S) (xl =¢p,7=0)dp

! * d
- Jo dr Jo {Epl(co,E,T)az—;(xl=Co777=0)]

X d¢ + IO dr _[0 { [w%nPl(n,T)

Cc? d
- 2P, %(x. =co b= 0)}
X7

c? e
=f 29, _ =
+ 5 Pl(ﬂ,T)axzaE(xl o, € O)}dﬂ (124)

The solutions of eqns (123) and (124) as P, and P, are
discussed in Appendix B. For P, and P, it is possible to
find the probability density function P(x, ) from eqns (121)
and (122) in domains {7} and {/I}, respectively.

Eqns (123) and (124) become solutions in the domains
{111} and {1V} (see Fig. 7) as long as the integration limits
for n as change from ¢; to — ¢; and for £ to ( — o, 0].

Special Case. Consider the model of a rod system with
additional elastic coupling as in Part 1 of this paper:’

%+ (280 + 2pa(®))k + Q1 + 20x()]x

+ 2k + B + 710 vk + ekn = () (125)

In the time instant when random vibration of this system
achieves or acrosses any level of amplitude Ay, the coup-
ling get torn and, as an example, one parameter, 7y,
changes as an irreversible jump. Additional coupling is
defined as in Part 1 accounting for coefficients v, I, and
I; from the paper.’ Determination of the probability density
function is very important for the safety of a similar system
described by eqn (125).

In this case, the hyperplane of the form of eqn (103) for
phase space (A, A) of eqn (125) is described as Al = A, and
a jump change of parameter v, is defined as:

=Ag;y1 =712, for lAlZ Ay (126)

The FPK equation in this case is found in Part 1 of this
paper:'

dwA,1) 8 [a 3a
o BA[?_A (a'_Ts'a"*a‘o A

Y1 =Y11 until IAl

~hA'+ LA+ 1 A7] w(A, 1)

’)

35 Az[(a7+agA W(A, 0], until |Al < A4,

(127)

For |Al = A, parameters I,” and I;" change to 7, and I
and the FPK equation becomes:

Ow(A, t d 3
W( : ) ['—-A (a1 - %—ag—am)/\

a  0Al2

LA+ 1A+ A }W(A )

.2
—(a; + asAHW(A, 1)], for 1Al = A,

Y2

(128)
where L' =y, &/320%; I3 =5y,,e256Q% I, =
v128/3207; and Iy = 5v,,&/256Q%. With condition 1A =

Ay, the phase space (A, A) of eqn (125) is divided into
two domains. We consider the first change of the system
characteristics, as an example, in the domain (0 < A = A,,
0 =< A < ). Since the diffusion coefficient B of eqn (125)
is continuous on switching line A = A, the first condition
of the conjugation eqn (106) can be written as:

wh=wT =w,(4g,1) (129)

where w* is the limit value of probability density function
w(A, ) as A approaches the switching line in the domain
A <Ap; w™ is the corresponding limit value as A
approaches to the switching line in domain A = A,,

The second condition of conjugation eqn (107) is defined
as the subtraction of eqn (127) from eqn (128):

aw' (A1) aw (A1
a ot
+2005 ~ DAL+ U5~ 15)AIw,

X (a7 +agA*) ™! (130)
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where

aw't (A1) _ awt(A,1)
a0 x

’

A=Ag+0

w (AD_ dwT (A,

3
ot o1 (130a)

lA=Ao—U

In order to determine the probability density function
w(A, 1) , it is necessary to find solutions of eqns (127) and
(128)) with the boundary conditions of eqns (129) and
(130). The stationary and nonstationary solutions of egns
(127) and (128) are found from corresponding equations in
Part 1." In this case, the approach suggested in Part 1' helps
to get rid of complex calculations of mixed integral
equations.

5.2 Case 2: stochastic processes in time-variant systems
with sliding noise mode

Consider one specific case of the dynamic system of eqn
(108) as:

Xy =003 = — 200 — wixy + g0 + 208(t) + B(x, £)g(0)
(13D

The stochastic process f{(t) in eqn (108) is now described as
output g(#) of a shaping filter with time-variant character-
istics and wz(x,, = wé = constant. Eqn (131) represents a
control process of equipment vibration isolation using com-
bination of a servo system and a sliding mode. Fig. 9 shows
the block diagram of servo system where:

T]+T2 2 l+k1k2 l—cpka
2a= = , Pl g)= ——,
R A % O &
— 1, if (c1x; +cax0)g(1) > 0
plx, 8)= (131a)
+1LAf (epx; +oaxx)g() =0

In reality, /k, > 1 and:

{ —k, if (c1x; +cax2)g(t) > 0
d(x, g)= .
+ k, if (C]X| +C2X2)g(t) = O,k :le/TI T2
(131b)
Analysis of systems of this type shows'”** that the output
x, of such a system turns out to be invariant with respect to
a broad class of the reproducible process g(#). Consider the
case of random vibration excitation £,(r) in input g(z) as
additive component white noise with M[£,()] = O and
MIEDEX(t + 7)] = ad(r). The equation of motion [eqn
(131)] assumes the forms:

. . k
X =25 % = — 200, — wpxy + Bo(x, 8) + 7127252
(132a)

) =50 + 208(r) — kg(®),
if (c1x) +cx2)g(H) >0
&, = (1) + 208(t) — kg(1),
if (c1x; +cxp)g(1) =0

Dy(x, 8) = (132b)

The FPK equations for describing stochastic sensitivity of
vibration isolation to the random excitation in this case
assume the forms:

P B
LIP(x), x5, 8)] = ~ i gx‘]“lsz}
3
= 5y = 2000 = wx, + @,1P)
X
G} o°pP
+ L2520, if (e1x) + c2x)g(t) > 0
2 ox;
(133)
oP 2
L[P(x),x;,1)] = — o E{xzpl
t

a
— =—{[ — 2ax, — wix, + ,1P)
axl

G} o*pP

+ —2—5x—%=0, if (c1x; +caxp)g() =0

(134)

Without limiting generality, assume that g(f) > 0 and the
problem can be solved in the system space x = (x,x,),
which is broken into parts by the sliding mode condition
as (cjx;+cpxp)==0: {I} = {x:(c;x; + czx3) > 0} and
{11} = {x: (c X + coxy) < 0}.

As in Section 5.1, the diffusion coefficient Bj; is contin-
uous on the switch line [eqn (103)] and the matching con-
dition [egn (106)] assumes the form:

Pt =P =P,(x3,0) (135)

where, as in Section 5.1, P* is the limiting value of prob-
ability density function P(x, r) as x approaches the line
x : (¢ x; + cpx2) = 0 in domain {7}; P~ is the correspond-
ing limiting value in domain {/I}.

The condition egn (107), in this case, becomes:

oP 4k P

\ - +
(E) =P+ EfQ‘PIgsPZ(XZst)=<$2‘) (136)

For an important special case where g(f) = g, = constant
and the switching line becomes x; = 0 (the stability prob-
lem of vibration compensation), it is possible to find the
stationary probability density function P(x;, x,) as the
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solution of the FPK equation system. Setting 0P/9r = 0, we
obtain as in Section 5.1:

4
Cexp{ - 2—a[x§+w%(xl + 5&) ]},
G “b
if x, >0
Plx, x) =
2a ok
Cexp{ [x2+[x2+w0 (xl - izl) ]}
Cf w§
| ifx =0

(137)

The constant C is determined from the normalization
condition.

It is required to find the nonstationary solution for an
arbitrary input function g(r) and switching line [eqn
(103)]. As in Section 5.1, we present P(x, f) inside the
domains {/} and {II} separated by the condition c¢x; +
cx2 =0, c) > 0 and ¢; > 0 in the form of integrals of
the boudary functions P, and P,.

For domain {/}, according of Appendix B as in Section 5.1,
one obtains:

o= | & | sopae=oa

v | or jwsms,ﬂq.(m - i—fs) dg
' oo c

+ J dr J {[w%n—Za—l—n
0 — Cy

~ @ ()P (n,7)

) P
) 2T G - 6_27)

C
_P|(71, T) Y2 (f— - E—n)} dn (138)

For domain {II}, taking into account the boundary condi-
tions of eqns (135) and (136), one finds (see Appendix B):

—cek

Pensn= | _ak [ o bastr=0 an

- L dr J_ £P\(5. 72 (n= - c—zs) d
- J' dr r" w3 —2(:\:ﬂ —&5(7)
0 . 07 CZTI 2

— 2kg(T))P1(n, 7)

sz C)
- TPZ(’LT) | E=— pa
2
- C—In)} dn (139)
G2

c? d
+ TIPI (1, T)—;i;-(i

According to Appendix B, P(xy,x;,0) = fix,, x3), g:(x, x2,
t, £,7), and gq,(x,, x5, t, £, 7) are probability density func-
tions for a Markovian process satisfying the eqn (131)
under the conditions x € {I} and x € {II}, respectively
(see Appendix B). As in Section 5.1, using the boundary
conditions of eqns (135) and (136) for determining the
boundary functions we obtain, from eqns (138) and (139),
the following linear integral equations:

pmn=]_at [

X‘h(xl = - :TZX2,T=0) dn
1

o

><qo< = —“—sz,n- ——e) dt

j dr r {|'w%n—2ac—ln-—d>2(7')
2

¢
— 2kg(r)Py(n.7) = L3, )

Cy Cy
- *XZ’E"" - _f’)
Cy

2

c?
/Pl(ﬂ, D= - C2x235= - Clﬂ
GE C Cy

X dy (140)

X g (Xl

and

PZ(x23t)=J_m dE J‘_ E‘_Z_sf(nﬁg)
Ci

8q, c2
X —lx=—-"x,7=0] d
6.X2(1 ClzT U

+ J:) dr J-imEP‘(E’T)

a‘“( R —s)dz

8x2
+ Jo dr [700{ l:(wén—Za::—;n—Ql(T))

G
X Pl(ﬂv T) - TPZ("y T)

dq; 2 €

X —[x,=— -2 —
6x2( 1 lxzwf -

+ C;P ( ) qu, (o]
e X b= =

X dn (141)
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For engineering analysis of stochastic process in time-
variant dynamic systems, method of statistical linearization
is also effective'”*.

6 CONCLUSIONS

In this paper, the probabilistic description of the response of
a nonlinear time-variant dynamic system driven by external
random processes has been discussed. The applications of
the FPK method to stochastic analysis of nonlinear systems
with random time-variant (reversible and irreversible) char-
acteristics are considered. A new class of dynamic systems
with stochastic nonlinearity and jump parametric excita-
tions are introduced. Comparison of different statistical
methods such as statistical linearization and statistical
moments is performed. On the basis of the FPK equation,
a new approximating method of statistical analysis for this
class of nonlinear parametric systems is introduced. Using
the solution of the FPK equation, the transient and
stationary processes of these systems were studied. The
sensitivity of the nonlinear system to different stochastic
correlated parametric and jump excitations is studied. It is
shown that the dynamic effect of stochastic nonlinearity
on the response may be significant and the peak amplitude
of the nonstationary moment response may be less than that
of the linear stochastic parametric case. Moreover the
third statistical moment can be positive and negative for
the essential nonlinear dynamic systems. In this second
part of the paper, we provide a background for studying
the stochastic stability of a nonlinear dynamic system with
stochastic nonlinearity and stochastic time-variant charac-
teristics. This study is to be described in Part 3 of this

paper.
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APPENDIX A STOCHASTIC JUMP IN SYSTEM
CHARACTERISTICS

Appendix A.1 Reversible stochastic jump in system
characteristics

Consider any Markovian stochastic process £(f) with a
smooth non-stop set  of states and with a real value-
reversible jumps. For any Markovian stochastic process
with a non-stop set of states:

Plwlw") = JﬂPL(wfw')P?(w'b”) do’ (A1)

If a jump in a small time interval 7 has the probability
aT+ 0(7) and the probabity density function of the jump as
probability of jump from point x into interval [y, y + dy] is
Ax,y)dy + 0(y) and [* . f(x,y) dy=1, then:
P,(xlx)=1—ar 4+ 0(1); P,(y+ dylx)=arf(x,y)dy
(A2)

For the probability density function w(y, ¢), one can write:

w(y, t+ A =1 — aAnw(y, t) + jﬂuaAtw(x, Hf(x,y) dx
(A3)
For the probability w(y,r) dy that point x(z) at the time
instant ¢ is in the interval [y, y + dy], one obtains from
eqn (A3):
a oc
Ew(y, = —aw(y,t)+ ‘[* aw(x, t)f (x,y) dx (A4)

eqn (A4) is the integral-differential equation. The availabil-
ity of the integral term is typical for a stochastic process
with jumps. On the basis of eqns (A2) and (A3), and Ref.2’:

WO, t 4 AN = (1 — v9DAr) j w\(x, t + Aty y, HW'®

X 0y dy+ D J

b#a

t+ At

. Y dr

Iw(,a)(x, t+Aty,7) dy

X [w‘."’(y, nn, W@ ndy (A5

eqn (A5) suggests that for the time interval (¢,  + Af) , only
one jump is possible. In eqn (AS5) the stochastic process
¢u(x, ) from eqn (80) is the Poisson process with real
up—down jumps and integral terms including possible
states of the stochastic process ¢(x, ¢). For a small value of
(t — 1), the following relationship for the probability density
function w\”(x, ; y, ) can be obtained:'”°

J W20 1y, 7 0) dy =) + LS @)t =)+ 00 = 7)
(A6)

where

) z"“ 9 @, 1 i ?
LP9=— ) —AW 4 BY (A7)
Sioxn b 2,582 andx K

Substituting eqn (A6) into eqn (AS5):
WO, t+ A = (1 — DA D (x, ) + LOWD(x, At

+0(AN) + D VAW (x, 1) + 0(A1))

b#a
(A8B)
Reform eqn (A8) as:
wOx, 14 Af) — w(x, 1)
At
= L%, 1) — p 9NV (x, 1)
+ 2 VP, 1+ 0(an) (A9)

b#*a

From eqn (A9) for Ar — 0 eqn (84) is obtained.

Appendix A.2 Irreversible stochastic jump in system
characteristics

From a physical point of view, the stochastic process
¢u(x,t) in eqn (80) is a random vector process described
as a random irreversible jump process with negative values.
For a fixed value of first component x = ¢;, the stochastic
process ¢(x, ) is a random homogeneous additive jump
process with conditional independent increments on the
second component ¢. For an evaluation of the conditional
probability density function of the stochastic process ¢y (x, 1)
on the second variable ¢ with the first variable x(c;) fixed it is
sufficient® to find the characteristic function on the second
variable.>?* Therefore, the stochastic process ¢(x, t) can be
described as conditionally independent of two components
in the temporal domain or in the phase plane as:

Lxl=¢;
w(x,t)z{%(t) o
P2i(x)

(A10)

Consider here the first case of eqn (A10). The second case
of eqn (A10), describing a stochastic system with timevariant
characteristics a sliding mode, is discussed for eqn (131).
Conditional characteristic function of process ¢(f) is
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described as:?*

Mlexp{ip;(x,1)}] =exp{ty} (All)
where the cumulant function
YN = iNe+ J:N{exp(i)\y) — 1} dF(y) (A12)

h= {hl»th-whn}s N= {Nl, Nz,...,N,,}, h; € N are vectors
of random variables characterized the ‘depth’ of the jump
F(h < y) is the distribution function of a random jump
value in process ¢(?).

Consider a general case in which stochastic process {x(f);
@u (x,0)} is the Markovian process with conditionally inde-
pendent homogenous second component at a fixed value of
the first component.:z'25 Consider T1t,7,x;] as the set of sam-
pling trajectories of process x(f) with x| < x;fort = u = 1.
The probability of this set for any initial state x(¢,) is posi-
tive. Let () be the conditional characteristic function of
process ¢y with a fixed first component x; and consider
ap(¢y) along a trajectory x(r) from the set 717,7,x;]. Examine
the crossing from state x;_; to state x;. The process x(r) is a
stochastically continuous Markovian process. If the initial
state x(f) = x, and lx(#)| = x,, then the process ¢, for state
Ix(#)! < x,, has increments coincided with increments of any
process f,1(7). Characteristic function of this process f(¢)
coincides with characteristic function ajg(wy). In any time
moment 7;, process x(f) crosses in state x; =< lx(#)| < x, and
process ¢y has a jump f{r, xq, x;) with the characteristic
function (7, xo, x;). This function Y(7|, x¢, x;) is depen-
dent on crossing the time moment 7, the states before and
after the moment of crossing. The values of {7y, x, x,) for
different 7,, xo, x; are independent from f,,(#) and x(¢).
When process x(f) is in state Ix(r)] < x,, the increments of
process ¢y coincide with increments of any process fo(f),
and in the time moment 7, of crossing x(¢) from state
lx(t)l < x, into state x, = lx(f)] < x; , process ¢y has a
jump of f{r,, x1, x;) and so on. Similar processes are sto-
chastic processes homogenuous on the second component
and with jumped first component.>* On examined trajec-
tory one can write:>

al(ew) = 0, (0,71, oi) n Y(Ts Xic — 1> Xks Pit)

<t

X [T an@itess ew)ag (Tt 00) (Al3)

T 1<t

where i is obtained from following relationship 7; < ¢ < 7, ;;
and Y(7, X — 1> Xpo ) = lim, o @, _ . (pw). The system
with time-invariant characteristics is a special case of eqn
(A13) where f(1;, x;,x; ), ¥(...)= 1.

The probability P®() of the parameters of system being
in state (a) is:

PO = J W dx (A14)

which is evaluated from

(a)
det ® - l,(ﬂa)p(ﬂ)(t)
+ > POy @=1,2,...,r)  (Al5)
b+#a

with initial stateas P”(0) = P{® calculated from eqn (A14).

For the stochastic process ¢,(2) in eqn (A10), the prob-
ability of absence from a change in characteristics shown in
eqn (Al5) is:

— ey

PPwW=e (A16)
From eqns (A5) and (A16), the probability w(x, 1) for a
system with irreversible characteristics?>?° is found to be:

w(a)(x,f)=e" ”‘"’”’Jw‘."’(x, £y, 0w (y) dy
i {aa)
+ Ioe - gy fwﬁ“)(x, 5y, 7)

a—1
X ) vy, 1) dy (A17)
b=1

The result of this approach differ from those described in
Refs!92627

APPENDIX B MATCHING CONDITIONS FOR
FPK EQUATIONS WITH DISCONTINUOUS
COEFFICIENTS AND DYNAMIC SYSTEMS
WITH VARIABLE STRUCTURE

The FPK eqn (104) may be interpreted in terms of field
theory as a discontinuous equation. Introducing the
equation:
s 14

i={Anw}— D (B,

fi= 1A, w) ,; 2 B B1)
where {; is the probability flux density in the direction of
the coordinate x;, and we rewrite eqn (104) in the form

3 < ¢

—5: -y i _ give (B2)

i=1 Bx,-

Let ¢ = (¢, ¢3.. .,c,,)T be the vector normal to the hyper-
plane [eqn (103)], and let v be the coordinate along the
normal (8v)/(dx;) = c¢; and v = O on the hyperplane eqn
(103).

Under the conditions of the problem, the flux density
vector [eqn (B1)] can have a singularity of the type &(v)
on the hyperplane [egn (103)], i.e. it is representable in
the form:

=8+ (B3)

where {; is the discontinous part of the flux.
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Designating A[f] = Av = 0,) — Av = 0.) we can write:

2= -2 cAlBw) ®4)
j=1

neAw— 13 2

=3 3 S B) (BS)

where the differentiation in the last term is carried out
without regard for the sudden jump.

Under the reasonable assumption that w(x, f) does not
have é-singularities, the matching conditions acquire the
form:

ij=1

n
divt®+ D cAlfi1=0 (B7)
i=1
Here, div,g'o is the (n — 1)-dimensional divergence on the
hyperplane [eqn (118)].
From eqns (B8) and (B7), we can write the matching
conditions for FPK eqns (104), (110) and (111) as follows:

A[B;-P(x,0)]=0 (B8)

14

From eqns (B8) and (B9) follows the matching conditions
eqns (106) and (107) accordingly.

We now represent P(x, t) inside the domains {7} and {II}
separated by the conditions x; = ¢y, in the form of integrals
of the boundary functions P; and P,.

Remark B1.The integral form of solution for eqn (110) in
domain {/} defines as a fundamental solution g,(x;, x5, ¢, 9,
£, 1) of egn (110), continued from this domain {/} onto the
entire phase plane (x;, x,) of the system eqn (108). In this
case we use the theorem'” that the fundamental solution
qi(xy, xa, t, 3, &, 7) of eqn (110), considered on the entire
phase plane of eqn (108), coincides with probability density
function of any random Markovian process.

We continue eqn (110) from the domain {I} onto the
entire phase plane (x,, x,) of eqn (108). Its adjoint equation
has the form:

d d
Nlg(n, £, 7)] = £+££

aq sz qu
—daf—wipl 2y L7 1
+[ 2t wo’llazwL TS

0=x,=c¢,

(B10)

The fundamental solution of eqn (110) is the transition
probability density function gq;(x(, x5, t, u, & 7) for a
Markovian process satisfying eqn (108) under the condition
x € {I}, where q,(x}, x5,¢, 9, £, 7) = 8(x;, — n,x, — &) as
(t — 7) — 0. It is also known>'” that q(n, &, 1) as a function

of the three arguments satisfies eqn (B10). The process in
the linear eqn (108) is Gaussian, hence g; is completely
determined by the vector expectation M[x,, x,, 1, £, 7] =
(my, my) and the correlation matrix Dl

ql(xlix2v 7 E’ T) =
2xy/ ld!

1 2
X exp{ - EIET,.J; D;(x; — m;)(x; —m,-)} (B11)

Here ld! is the determinant of the correlation matrix, and D;;
is the signed minor of the element dj; in that matrix.The
vector (m,, my) is found as the solution of the system:

ty =my; tiy = — 2amy —wimy (i=1, 2,...,n) (B12)

with initial conditions m (1) = y,my(1) = £.
The elements of the correlation matrix are found from the
system:!7?*

dyy=2dyy;d)y = dyy — widy, — 2ad,y;
dyy = — 2widy; — dady + C}; dyy =dy (B13)

with initial conditions d;; (t = 7) =0 for i, j = 1, 2.

For the solution of problem, the desired representation of
the function P(x, ¢) in domain {7} in terms of the boundary
functions P, and P, we use the following method.

Let us examine the equation:

t—o
Jo ]
0 {(n, £):Inl<c;, 0=<g=w)

{P(ﬂ’ E! T)N[Q|(7h E’ T)] - ‘I1(7l, £7 T)L[P("’ E’ T)” d" dE
_ t—0 a a
- Jo dT.[ L(n,azwl«nosisml { E[QIP] * %[qull

L2
0§

c?a c? ap
2 =% & of
(2a+ won)qi P+ 2t 27 ag]}d" d¢

=0 (B14)

According to the Gauss—Ostrogradsky formula, the left-
hand side of eqn () is equal to an integral of the second
kind over the surface bounding the following volume:
0=7=t-90,0=<¢ =10 = 5 = ¢, In passing to limit
I — o, 0 — () is essential [to take account of the rapid decay
of the functions P(x,f) and g, as Iyl — % and |¢] — =], so
that all integrals encountered converge, obtain the repre-
sentation of function P(x, t) € {/} through the boundary
functions P, and P,. In this case, we note that if x € {I},
then:

l. J’v[ IR y -
e l(n,E):In\q(,;q'(x"xz’"’E7 0)P(n, £t — o) dy d¢

=P(X1,X2,t) (Bls)

Now, denoting P(x), x,, ) = fix,, x,) we can write from eqn
(B15) for domain 0 < x; < ¢(,0 < x, < ® eqn (121).

In domain {1} of the phase space (x;, x5), eqn (111) is
satisfied by the Gaussian transition probability density
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function g,(x,, X, t, £, 7) the parameters of which are deter-
mined from eqns (B12) and (B13) with replaced
wg— w% and w% > wf. Taking account of the boundary con-
ditions of eqn (112) and eqn (115), we find the representa-
tion of P(x, ¢) in the domain {/I} has the form of eqn (122).

Remark B2. For eqn (131) with the variable structure we
can write:

a 5]
N[ql(na ErT)]: 5§+E£

C2 2
Y9, Gra_,
ot 2 ot?

(B16)

+[— 20t — wg+ &, (7)]

and

q1(xy, x0,,9, €, 7)

1 1 <
== - 5757 Dy(x; — m)(x; — my)
27/ 1d| exp{ 2ld! i,jz=l o s }
(B17)

The parameters m,, m, and D; we define from egns (B12)
and (B13). Eqn (B14) for this case writes as

t—o
Jo o]
0 {(n, Ex:(c1n + 26)>0}

X {P(TI, Ea T)N[‘Il(TI, E,T)] - ql("h E’ T)L[P(Tl»f, T)”

t—a
canse= [ |
n dg 0 {(m. E)x(ern +c28)>0}

d

a d
X {E[Q1P]+ %[EP‘II]‘*‘ FT:

Ciag, C; oP
X [(2as +abn - 2P+ S5 S g] }

dpdé=0 (B18)

and

limjj X1, X0, 50,6, t—0
5m ) ) e s capso DT b1E )

xP(TI,EJ_‘T)d’?df=P(x1»x2»t) (Blg)

In this case we obtain the results.!”-?*

Remark B3. The kernels of eqns (140) and (141) define
as Gaussian probability density functions ¢, and ¢, that
rapid decrease as lx;, x,] — . In this case, these kernel
functions can be represent as Chebyshev—Hermitian expan-
sion and coefficients of this expansion has the function
form an expectations (m;, m;) and correlation matrix
D (¢, 7). With the approximation g, and g, as partial sums
of series we obtain the linear integral equations with
degenerate kernels. The solution of these equations reduce
to the solution of algebraic equations and can be solvable,
for example, by successive approximation methods or
methods of steepest descent. The accuracy of this solution
can be evaluate with well-known formulas of linear integral
equation theory.



