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Our thermodynamic approach to the study and design
of robust optimal control processes in nonlinear (in gen-
eral global unstable) dynamic systems used soft comput-
ing based on genetic algorithms with a fitness function
as minimum entropy preduction. Control objects were
nonlinear dynamic systems involving essentially non-
linear stochastic differential equations, An algorithm
was developed for calculating entropy production rate
in control ohject motion and in control systems, Part 1
discusses relation of the Lyapunov function (measure of
stability) and the entropy production rate (physical
measure of controllability). This relation was used to
describe the following gualitative properties and impor-
tant relations: dynamic stability motion (Lyapunov func-
tion), Lyapunov exponent and Kolmogorov-Sinai
entropy, physical entropy production rates, and symme-
tries group representation in essentially nonlinear sys-
tems as coupled oscillator models. Results of computer
simulation are presented for entropy-like dynamic be-
havior for typical benchmarks of dynamic systems such
as Yan der Pol, Duffing, and Holmes-Rand, and coupled
oscillators. Parts 2 and 3 discuss the application of this
approach to simulation of dynamic entropy-like behavior
and optimal benchmark control as a 2-link manipulator
in a robot for service use and nonlinear systems under
stochastic excitation.

Keywords: Computational intelligence, Entropy production
rate, Lyapunov stability, Entropy-like dynamic bchavior

1. Introduction

The application of new knowledye-based control algo-
rithms in advanced control theory of dynamic robotics sys-
tems has necessitated the development of new calculation
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such as computational intelligence (CI). Conventional basic
computing tools for CI include genetic algorithms (GAs),
fuzzy neural networks (FNNs), fuzzy set theory, evolution
programming, and qualitative probabilistic rcasoning. Ap-
plication of C{ to complex robotics motion control theory is
divided into (1) the study of stable motion processes and (2)
unstable motion processes of complex dynamic systems.

In the first case, stable motion, we describe intelligent
control algorithm development and design (Fig.1}. The fea-
ture of the given structure is the consideration of the control
object based on fuzzy system theory as a black box, and the
study and optimization of input-output linguistic relations
using GA, FNN, and fuzzy control (FC) to describe the
changing law of PID-controller parameters with minimum
control error. In small uncontrollable (unobservable) exter-
nal excitation or small parameter (or structure} change in
control objects, such an approach ensures robust, stable con-
trol.

In a global unstable dynamic control object, such ap-
proach (a presence robust), docs not guarantee stable control
in principle. For such unstable dynamic control objects, we
need a new intclligent robust algorithms based on knowl-
edge about the movement of essentially nonlinear unstable
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dynamic systems. An cxample is the new benchmark, the
robotic unicycle.” The gencral form of similar intelligent
robust control algorithms is shown in Fig.2. Figures.1l and
2 use the following designations: GA: genetic algorithm; f:
GA fitness function; S: system entropy; S;: confroller ¢n-
tropy; Si: controlled plant entropy; &: efror; u': optimal con-
trol signal; m(t): disturbance; FC: fuzzy controller; FNN:
fuzzy neural network; FLCS: fuzzy logic classificr system;
S5CQ: simulation system of control quality; K: global op-
tamum solution of coefficient gain schedule (teaching sig-
nal); LPTR: lookup table of fuzzy rules, CGS: coefficient
gain schedule (ki, ki, ks).

This approach was firstly presented” as a new physical
measure of control quality for complex nonlinear controlled
objects described as nonlincar dissipative models. This
physical measure of contrel quality is based on the physical
law of minimum entropy production in intelligent control
systems and in the dynamic behavior of complex control
objects. The problem of the minimum entropy production
rate is equivalent to the problem of maximum released me-
chanical work as the optimal solution of corresponding
Hamilton-Jacobi-Bellman equations. The variational fixed-
end problem of maximum work W was shown to be equiva-
lent to the variational fixed-cnd problem of minimum
entropy production.” Both optimum solutions are equivalent
for dynamic control of complex systems and the principle
of minimum of entropy production guarantees the maximum
released mechanical work with intelligent operations. This
physical measure of control quality was used as a GA fitncss
function in optimal control design (Fig.2, Box SSCQ).

The introduction of physical criteria (minimum ¢ntropy
production rate) guarantees Lhe stability and robustness con-
trol of unstable objects. This differs from the aforesaid de-
sign (Fig.1) in that intelligent global feedback in control is
used. The relation  between  control  object  stability
(Lyapunov function) and controllaliity (entropy production
rate) is used. The basic feature of this is the necessity of
model study for control objects and the calculation of the
entropy production rate through parameters of the developed
model. The integration of joint systems of equations {equa-
tions of mechanical model motion and of the entropy pro-
duction rate) enable the result to be used as the GA fitness
function as CIL. Part 1 describes a general approach to en-
tropy definition and calculations from the dynamic system
model movement equation and presents results of entropy-
like dynamic behavior modeling of typical benchmarks of
dynamic systems.

Parts 2 and 3 introduce a thermodynamic approach to
studying and designing robust optimal control processes for
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nonlinear nonholonomic (in general global unstable} dy-
namic systems.

2. Definition of Entropy Production Rate
and Relation to Lyapunov Stability in
Nonlinear Closed Dissipative Dynamic
Systems

One objective of thermodynamics is to characterize stales
of macroscopic systems depending on a limited number of
observables. Tt is well cstablished that large classes of dy-
namic systems present (under nonequilibrium conditions)
complex behavior associated with bifurcation sometimes
culminating in deterministic chaos. Much work has been
done in characterizing this complexity. A variety of quanti-
ties related to the dynamic, including entropy-like, have
been introduced and provide a rather successful description:
Lyapunov exponents, Kolmogorov-Sinai entropy. and block
entropies are representative examples. Our objective was to
explore the possibility of introducing entropy production-
like quantities related directly to the dynamics of complex
systems and to assess their status for thermodynamic en-
tropy production. This is achieved by adopting probabilistic
formulation.*

Remark 1. In mechanics of continuous media, elasticity
theory, and general dynamic system theory used methods
and models described as irreversible in phenomenological
thermodynamics.”® Different approaches are used.>” The
phenomenological thermodynamic approach to correctness
analysis of differential equations developed first®” and nec-
essary conditions for physical realization of differential
equations as mathematical models for real dynamic systems
were studied. The relation between the time rate of
Lyapunov density and the time rate of cxcess availability
dissipation in phenomenological thermodynamics'” was
then studied. The sume problems from statistical thermody-
namics''™'* are discussed.

Remark 2. Relaxalion processes were analyzed as a com-
plex system describing compound parts of mechanical @
thermodvnamic behavior in dynamic systems from pheno-
menological thermodynamics'®. Mechanical behavior of
dynamic systems was described by the designated class of
ordinary nonlinear differential equations. Thermodynamic
behavior was characterized by entropy production and de-
termined directly from mechanical system motion. The rc-
lation between entropv production rate and Lyapunov
function for closed nonlinear relaxation processes in dy-
namic systems was introduced and its consequences dis-
cussed. >

Our purpose is to describe an application of the pheno-
menological thermodynamic approachq’ for analyzing any
class of dynamic systems described by nonlinear dissipative
differential equations. We studied relations between the no-
tion of the Lyapunov function, entropy production ratc, and
the physical realization of approximate mathematical mod-
cls deseribing irreversible processes in closed nonlinear dy-
namic systems,

Thermodynamic criteriz (positive entropy production
rate) as a physical mcasure for realizing a mathematical
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model (relaxation processes) are introduced. These criteria
indicate the need to put extra (thermodypamic) limitations
on parameters of differential equations and on qualitative
properties describing dynamic evolution systems. We stud-
icd the correlation between conditions of physical realiza-
tion and the notion of stability, and the correctness of
mathematical models for irreversible processes in a non-
linear dissipative dynamic systems.

Such study is very important to correctly analyzing dy-
namic evolution and stability motion of dynamic systems,””
? and for describing artificial lifc conditions for
micronanorobots.'” Intreducing a physical background in
control processes is very important to designing optimal
control processes using soft computing based on GA with 4
fitness function as minimum entropy production in the mo-
tion of a dynamic system and in the control process.2J

2.1. Definition of Entropy-Like Dynamic Behavior of
Complex Nonlinear Systems
Control objects are described based on classical mechan-
ics using two approaches — Lagrangian and Hamiltonian
equations.
For both approaches, we consider cntropy production ratc
definition and calculation.

2.1.1. T.agrange’s Approach
Consider Lagrangian equations

dioKy ol a0,
N D . = F,‘ 4 P T 1
d‘(aqj aq, " 9 ® )

where I = K — U is a Lagrangian of the dynamic system

(N, K = %E agqiqr is kinetic energy, and U =
k=1

%Ebgkq,-qk is potential energy of a dynamic system, ¢; is a
Bh=l
generalized coordinate.

In linear algebra, operator A is defined such that g = AE

orgi = AllEl + ...+ Al‘ﬂ';:i'i (l =12 ., I’l) and T = %Ealf Elz’
i=1

U= %E b'; €2 From Eq. (1) for a closed system, we obtain
2iu

i
éi+ﬁ(él! reey éﬂ) + UJ?EE = 0, (I = 1, 2., cery n) - (2)

Newton’s Eq.(2) include additive nonconservative fric-
tion forces f(E, .... ).

Consider Lyapunov function V (for ¢ = 1 and #; = w)
as full energy (V = E)

V- %Egﬁézoﬁgf “T+U=E ....(3)
i=1 =1
and
A _ iE L9 i
s Egl.g,.+2(u;§j§,~. ............ (4)
i=1 i=1

After multiplication, Eq. (2) on & and summing index i
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from 1 to # we obtain the following equation:

n n "

e+ T oks = - DEAE, 8 ... ()

i=1 i=1 iml

From Eqgs. (4) and (5), it is {ollows thal
dv o :
i -Egﬁ(zl, WEY <O (6)
i=l

The entropy production rate (for a closcd system)

% - %E S U S )

From Egs.(6) and (7), we obtain

v 1ds
dt T dr

Thus, we obtain the general relation between the
Lyapunov function (stability},' the entropy production rate,
and the full energy of 4 dynamic systern. This relation is a
general one in the vibration theory of dynamic sysiems,

From Eq.(8), it follows that an infringement of thermo-
dvnamic criteria of physical realization on right side of Eq.(8)
result in the instability of dynamic systerm and vice versa.

Example 1. Consider the dynamic system as

g+olg) + elg: ) = 0, 90,9} = (g, 0) = 0. (9
According to thermodynamic criteria (7)

1dS .
T dt - q)(('i'a q)‘?"(}

For a particular case of Eq.(9)

L 1dS .. oo
q+fg+wyg =0, = = Pgg = g

and coefficient § must be positive (§ > 0},

1dS _

Tdr ~

Bg'"'q" and for n = 1, m = 2, B > 0, we have Pg’q’ > 0. For

m=2iitis necessary that n=2i + 1, > 0,(i - 1,2, ..., ).
Similar relations cxist between the entropy production

rate and the correetness of dynamic sysiems.™

For a dynamic system: § + Bg'q" + o'g = 0,

Example 2, Entropy-Like Values and Criteria of Dynamic
Accuracy in Nonlinear Automatic Control Systems (Accu-
racy of Linear Approximation). Consider criteria of dynamic
accuracy in a nonlinear automatic control system described
as nonlinear equations®:

"

Bo= Y agy+ Pla) + 1) R0 s Fo

J=1
n

X o= 2 ax. (=1) ... ... (10)

i=1

and a lincar approximation as
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2 ayx; + dx +ﬁt); lﬂf)g = Fu, Ay s d) s dy
i=1
"

2 ap, (=1).. . ... ... ... ... (11)

j=1

Xy

X

Excitation f{r) is a module-bounded function and for f{¥)
= 0 the system (11) is asymptotically stable. Necessary and
sufficient conditions for linear approximation as Eq.(11) are
described” as

dVy _dV,
— - <
dt dt
where Vy and V; are Lyapunov functions for nonlinear and

linear systems corresponding. From the relation of Eq. (8)
and Eq. (12) follows

dr dt

Eq.(13) describing the entropy-like criteria of dynamic
accuracy in linear approximation (46) of nonlinear automat-
ic contro! (10) means that the entropy production rate in
linear approximation must be less than in a corresponding
nonlinear system.

This approach was used™ to describe sensitivity and
invariant conditions in nonlinear automatic dynamic control
connected with the study of problems as excitation accumu-
lations and stability on the part of generalized coordinates
of dynamic systems.

2.1.2. Hamilton’s Approach (Sympletic Geometry)

This approach unifies classical mechanics and thermody-
namics. From mathematics, one postulate that the set of all
states of a thermodynamic system is a differentiable mani-
fold M and of the finite dimension. The evolution of the
closed dynamic system is defined by semiflow U:R, x M —

M generated by vector field Z(e) = %U{z, €)li-v,e EM. The

vector ficld does not depend explicitly on time, which
means that the system is autonomous, or equivalently, is
closed. The dynamic system must satisfy the two principles
of thermodynamics. There exists cnergy state function H: M
— R, such that Z_dH = 0, where | is the operator of the
inner product. This only restates the conservation of energy
principle. In the atlas of manifold M are coordinate systems
in which state functions divide naturally in two classes:
geometrical and nongeometrical state functions. To the first
class belongs, for example, a state function such as the
position or velocity of a point particle, and the second con-
tains, for example, the energy or the temperature of the
system. The essential difference between thermodynamic
mechanical systems is that the latter is fully described with-
out using nongeometrical state functions. The system is sim-
ple if, for each choice of special coordinate systems, the
class of its nongeomctrical state functions contains only one
element.!””  We choose temperature as the unique
nongeometrical state variable and study systems with posi-
tive temperature 7, hence M = M x R. = {m, T}, T > 0. For
simple systems, only one nongeometrical state variable is
needed to deseribe all nongeometrical internal phenomena.

The second principle of thermodynamics is formulated
as follows: if the system is adiabatically closed, there is

Voi.3 No.2, 1999
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nongeometrical state function §: M — R, entropy, such that:
H .
1) %§ > 0; and 2) 7, JdS = §, = 0. We not entirely recover

work put into the system because part of it is always wasted
by friction. The expression of § satisfying the third principle
T
of thermodynamics (5(m, 0) = 0) S(m, 1) =f ;aHd'[. Vector
_ o7 at

field Z = (X, 5) of a simple system is defined so that the two
principles of thermodynamics are respected. We always use
cntropy as the nongeometrical state variable.

The first Taw for a closed simple system is reduced to

ZJdH = XJdH + T5. Hence § = ~2XJdH (see. Eq. (8))

The second law imposes $=0.To satisfy this nequality,
we adopt Onsager’s hypothesis by setting S = -;—,A,‘(X, X,

where A(X, X) is a positive scmidefinite symmetric (s)
quadratic form. Consequently, we have X JdH = — A(X, X).
We postulate that field X is defined by dH = — A(X), where
A: M — (TM)] is bilinear on TM. A vector field of Tp, nM
is given by a couple X = (X, xo) , where X, € T,M and xy

€ R. [Decomposition df = df + %dT is nsed and therefore

d
XJdf = X1 1df + H{”‘T"] A bilinear form A always is decou-
pled in a sum of a symmetric antisymmetric form, i.e., A =

As + Agy and'”

—AX, X)

I

F{>>—

L

‘ {A_;(X,X)+ AKX, X) = %AS(X,X).. L (18

Equation S = %Ax(X,X) and dH = - A(X) define com-

pletely vector field Z that correspond to the two principles.

In the field of sympletic mechanics, where state space is
reduced to the submanifold, we know that vector field X is
defined by dH = -Q(X), where QX) is a sympletic 2-
form "™ From this, the discussed model appears as a gen-
cralization of mechanies. The symmelric form, absent in
mechanics, is introduced to acecount for dissipation. If the
simple system is not isolated, vector field X, is simply de-
fined by dh = -A(X) + wy, where o, is work defined by a
differential 7-form as w: R x M — T'M. Work oy, is only
produced by a change in system geometrical state variables;
this leads us to impose an essential restriction on w: Vx, €
R, (0, xao)loy = 0. First principle Z,JdH = Xt ldH + T5 =

Xedwe + O consequently gives S = %,A,(X, X+ %Q,. It Q.
= (), i.c., if the system is adiabatically closed, then we re-
cover § = 0. Quantity %A_;(X, X) is called the internal irre-
versibility of the system. A dissipative mechanical system
is defined by manifold M = T N, where N is the configura-

tion manifold.

Energy (Hamiltonian) and bilinear form A are given
717
as™

Hg, p, S) = K(p) + Ulg, S} ;
Alg, p, S)=Qp)+ Alg, p.5), . ... .. .. (15)

Journal of Advanced Computational Intelligence 85



Ulyanov, 8.V., Yamafuji, K., Ulyanov, V.5., et al.

where K(p) is kinetic energy, U{g, §) is internal cnergy
(thermostatic energy) of the same system but in constrained
equilibrium, Q(p) is the sympletic form on T°M,'" and A (g,
P, 5) is a positive semidefined symmetric bilincar form op-
erating only on vectors of T'N.

Example 3. Damped harmonic oscillator: M = M x R = R
x R = {(g, p), S} with

N P P
H(Q!pa S) = sz +2k(.3)q'+f(5),
Alg, p. S} = dg A dp + Mg, S)dqdp,

where m > ( is mass, k(S) is the spring constant, f{S) is
purely thermal cnergy and Au(g, S) = 0 is interpreted as the
friction coefficient. With notion Z = (g, p, 8), equation dH

= —A{X) gives

1 . . .
P KS)adq = - pdg + qdp - Aly, s)qdq,

. NP 1 - .
from which g = o= -Adyg, s)mp — k(8)g. The equation

for the entropy production rate, S = %,AS(X, Y), is reduced

0% = L Afq, $p = 0 and equivalent 1o Eq (7).
dr m*T

3. Relations Between Entropy Production
Rate, Deterministic Chaos, and
Lyapunov Function

From Eqs.(7) and (8), we can define a preduction entropy
rate at the expense of irreversible processes through an ac-
cordingly selected Lyapunov function. The well-defined
functions (wdfs) from a Lyapunov function is also known
as Lyapunov functions.'” Between these wdfs, we must
choose the wdf that satisfics basic thermodynamic relations
(8). The entropy production rate is a single-valuc function
of dynamic system parameters and Eq. (8) lets us pick cor-
responding function V from the set of Lyapunov functions,
For every differential asymptotic stable system (in
Lyapunov sentence) therc is a Lyapunov function' and
from Eq.(8) it follows that 4 production entropy rate caused
by an irreversible process in the system also exists.

3.1. Relations Between Entropy Production Rate, Deter-
ministic Chaos, Lyapunov Exponent, and Kolmo-
gorov-Sinai Entropy

Classical mechanics 1s said 1o be chaotic {or irregular) if
adjacent trajectorics in a given region of phase space diverge
exponentially."” The largest Lyapunov number A describes
the asymptotic rate of exponential separation () between
two initially close trajectories at distance d(U): A =

it

lim *ln“— A universal quantity that is measured sto-
P d(O)

chasticity is Kolmogorov-Sinai (KS) entropy &, defined in
the general case of more than one region of connected sto-
chasticity ™ h = f 2 Ax

I =0
of the invariant volume (measure) in G, and x stands for

)du, where dp is an elemnent
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conical coordinates and moments. In a single region of con-
nected stochasticity xs are independent of x and the integral

over du simply yields 2 = 2 Ay . In general, KS-gntropy
P

presents the mean of entropy production over the basin of
an attractor. KS entropy /i provides a measure of the rate of
loss of information in predicting the future course of the
trajectory and a dynamic system is said to be chaotic if # is
positive definite.

For dynamic system x = F(x), where (x, F) are vectors in
n-dimensional space R%, in the neighborhood of given point

X we write x = xp + 8x, where %ﬁx = M(xo)dx, M(xp) =
aF

- 6Ij X om iy
point xo. The n-th Lyapunov exponent in R” is defined as

. We construct orthogonal system (g, €3, ..., €5) at

"
1 erAEiA .. AE
follows: lim™ log|———

t—x

CoNERA .. AED

= 2 A; , where opera-
i=1

tion A presents a generalization of a vector product upon

higher dimensional vector space. According to Liouville’s

¢ 2
theorem, é]e,l Aern . n gl =divEx)el el A . A€l

Integration of this expression gives
1 2 n
.1 e ANE A .LAE
lim log| T—5————| = lim fdwF )ds = fpdavfdl"
o MErh ... AEp RN

i’

and, for a nonconservative dynamic system, the entropy

production ratc is™” % = [pdivFdT, where density function

p fulfills Liouville’s equation. Thus —
E A

. . L diS .
rate duc to irreversible process inside system i‘ = 2 A

f pdivFdl =

E Mo+ 2 %; , and for the entropy production

"

i=1
It is plausible that the rate at which information about the
system is lost equals the average sum of positive Lyapunov

cxponents: i = f pz A/ du, where p{x} is the invariant den-

i=1

sity of the attractor. Thus, k = fp%‘tsdu = (%} In most

cases, A's are independent of x, so

= 2)\,}fpdu -
i=1

.-z * diS
EA,- and Jt = —s L (16)

Remark 3. There is a close relationship between entropy
production of nonequilibrium thermodynamics and KS en-
tropy of dynamic system theory.”” We have the entropy
production rate due to irreversible processes inside the sys-
n
tem (a role of bifurcation) % = 2 Al . where Af is k-th
k=1
positive Lyapunov exponent. For KS entropy with a differ-
entiable map of a finite-dimensional manifold and an er-
godic measure with a compact support Ruelle' it is shown
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that £ < E A} . According to Eq.(8), we write
7

1dV <,
i -Tdt_Exfah. ......... (17)
j=1
Eq. (17) is the generalized description of relations be-
tween the thermodynamic entropy production rate, dynamic
stability of deterministic chaos, Lyapunov exponents, and
KS entropy.

3.2. Statistical Definition of Entropy Production Rate
and Symmetries of Stechastic Dynamics

The condition of instability of the two basic aspects,
probability and irreversibility, are included, including chaos
and nonintegrability in the sense of Poincare. There are also
classes of situations where diffusive features play an essen-
tial role, e.g., situations studied in nonequilibriuvm statistical
mechanics. For these situations, we must include in the fun-
damental description the two aspects so conspicuous on the
macroscopic level, probability and irreversibility {consider
bifurcation and chaos).”” It is well established that large
classes of dynamic systems present, under nonequilibrium
conditions, complex behavior associated with bifurcations
culminating in some cases to deterministic chaos. A natural
description of complex dissipative systems should use the
two principles of thermodynamics: 1) the principle of con-
servation of energy; and 2} the principle of nondecrease of
entropy.

3.2.1. Statistical Definition of Entropy Production Rate
Having mapped dynamics stochastically, we inquire

about properties of information (Shannon)-like entropies.”®

Specifically, one-time entropy is considered to be

5 = -kBJ’p(x, Olnplx, Hdx, ... ... ... (18)

where kg is the Boltzman constant and p(x, £) is the prob-
ability density function. The change of so-defined entropy,
hence the time derivative of Eq. (18), then follows as

das, aplx, t)
o= -k,,fm +Inp(x, t))[ de. .. .. (19)
. e, dp
According to Liouville’s theorem for phase space a

0 and

3
W _ o (epoH
a E(aic,-ax,-

i=

(?x,- r')j:j

apaHJ ........... (20)

Inserting Eq.(20) in Eq.(19), we obtain % =0= Cfii'
(0, i.e., entropy change vanishes as long as Liouville’s theo-
rem applies to p(x, x, 1). Liouville’s theorem for phase space
does not apply if, for example, particle-particle interactions
and stochastically force a continuous time dynamic system
to take place.

Example 4. The evolution of a stochastically forced dy-

namic system is given by a set of coupled first-order
Langevin equations of the form

Vol.3 No.2, 1999
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where x 1s the state vector, F the vector field, u a set of
control parameters, and E(s) stands for the effect of fluctua-
tions of external noise on macroscopic dynamics. The effect
is modeled as an additive multi-Gaussian white noise
(EANEAL)y = Dyd(i-1"). The structure of covariance matrix
Dy; (positive definite matrix) is imposed in external noise
but follows from fluctuation-dissipative relationships in
thermodynamic fluctuations. Eq.(21) defines a Markovian
diffusion process and induces a Kolmogorov-Fokker-Planck
(FPK) equation for the evolution of probability density func-
tion (PDF) p(x, ¢) as’®

ap 9 1w w .. &P

- = - —(Fp)+5 Dy——. .. (22

at 2 ax,-( pl+5 21 121 Y ax0x; @2)
Therefore, Eq. (19) is rewrittcn as

ds, 3
= kafll+ lnp){ 2 5 Ee)

d
; (Dap)}fix - {23)
; dx,-ax,-

Integrating the terms on the first sum twice by parts, we
obtain

d
ka(] + lnp)g(F,p) dx

t‘g[
ar

dx fpdwF dx =

The second term in Eq. (23) positive definite

d:S; op
- —2 uf [ )(axj) =0 ..... {25)

and presents the analogy of the Fisher information amount.

Thus, Eqs. (24) and (25) lead to identify the flux and
(information) entropy rate correspondingly. Away from
cquilibrium, the entropy production rate (25) enters entropy
balance through

By _dS dS

WSy
dt
pression (26) is reduced to the sum of Lyapunov exponents
as in Eq.{17) — a negative quantity for a dissipative dynamic
system,

Remark 4. For a particular casc of p-space (x, y, z, Px, Py
Pz 1), the FPK equation is as follows:

ap
E=-Z——(F(p F)P)H?IEE

i-ji=1

(Du(p 0p),

where m is a mass of interacting particles, Fip, ) drift
vector compoenents of the FPK equation, and Dy{p, ¢) diffu-
sion tensor elements. Then
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kgﬂl + lnp)lz

22_~( A p)pde .. (27)

i-jj=1

(Fip, Dp)

Integrating in Eq. (27), terms of the first sum twice by
parts

d aF;
f(l +P)5;(F.-p)df =fp671,»dt'

Consider Maxwell-Boltzman nonisotropic distribution

P Py P }

p=gxy.z ’)e"p{ T DinkaT ~ 2mksT  2mkgT

with g(x, v, z, ) as self-consistent charge density and the
exponential function describing the distribution of the inco-
herent part of kinetic particle energy. Thc coherent part of
kinetic energy is eliminated because it does not cause terms
of the second sum of Eq. (27) evaluated to

In summary, the change of entropy caused by a Mark-

ovian process is expressed as an FPK-equation coefficient

23
as )

m
:'j(pa I)p) dt = _m&f Dijp dr.

Example 5. Consider the example of a simple yet nonlinear
dynamic system in the presence of noise

In the noiseless limit and for y < 0, systemn (29) admits a
stable single fixed point whose Lyapunov exponent is A =
v. This fixed point becomes repelling for y > 0. In this range,
two new simultaneously stable branches, x = =V, emerge
from x = (). Lyapunov exponents associated with these new
attractors are & = -2y. In a weak noise limit and long time
limit, Egs. (24) and (25) are expressed”” as

dS: <
" E MAODY, (30
i=1
4S <
e E MAODY, (31)
i=1

i.e., the flow and production of information entropy cancel
each other.
Remark 5. Consider a simple system

de _ . dp

TP = - VUW+ED, (32)

where v is the friction constant. Work done on the system

88 Journal of Advanced Computational Intelligence

by a reservoir is expressed as

(- 1+ 50) dv = (2 1+ VUE) e = dlE + U).

In the large y limit, we sct %{3 =

d(Q) = dE. Note that heat dQ absorbed by the system from
the reservoir is given by dQ = dE, i.e., mechanical released
work is equivalent to heat absorbed from the reservoir.”
This relation is used by calculation of the entropy produc-
tion rate in complex dissipative mechanical systems.

0, equivalent toy =1 to

3.2.2. Entropy Production Rate and Lie Symmetries of
Nonlinear Dynamics

In the study of nonlinear dissipative dynamics, it is im-
portant to determine under what conditions a given dynamic
system is integrable. Three techniques are widely used,
namely Painleve analysis, Lie symmetries analysis, and a
direct methed of finding involutive integrals of motions.
Among these, group theoretical methods are specifically
significant. Given the nature of the symmetry vector field,
one can also write integrals of motion for dynamic systems.
The study of generalized Lic symmetries of nonlincar
Hamiltonian systems gives intcgrable parameters and inte-
grals of motion, and also separable coordinates if they exist.
The existence of symmetry for differential equations leads
to a reduced order in ordinary differential equations or dif-
ference equations and to a particular solution in partial dif-
ferential equations.

For the set of first-order coupled nonlinear ordinary dif-
ferential equations of motion as Fi{x, x) = 0,i=1,2, .., N;
j=1,2, .., M, invariance study under one-parameter infini-
tesimal point transformations of the form

XYE =X+ S'Y]j(t, X,‘) s

T=t+elltx), i=1,2,.,.M....... (33)
The corresponding infinitesimal generator is
a d
V= I,x,'i'i' f,Xf T s e e e e 34
&l ko + (e x) o, (34)

We take T = 0 without loss of generality. The evolution-
ary vector field takes one form

a
= irsx! o
n{ )ax

For the study of Liec symmetries of the set of coupled
ordinary differential equations of the first order, we must

know first prolongation P of vector field V.
The associated first extended operator is

a
PV = i—+ni—
N ox; 0x;

where 1, = D, i = 1, 2, and D, is the total differential
operator of a one-parameter symmetry group®> for system
Fi{x;, x;} = 0, whenever Eq.(36) is satisfied

SAF) = 0. .. GD

i

d .
PIVIENs -0 = I+,
ax;

Substituting the specific equation of motion F; = O in
Eq.(37) and solving it consistently, we get Lie symmetrics 1.
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Remark 6. The second and higher prolongation of vector
field V does not lead to nonsymmetries for the equation of
maotion. For example, the second prolongation

) d .8 .8 . dn
P = 4+n—+Ni—, N = .
" ox, M 8x,—+n ox; n dr

Acting on system F; = 0 leads to invariance conditions

a . 9
PEZ)V(F;'NF,;O =[Mi—+n]F) =0
Bxi- 8x;-
the same as the right side of Eq.(37). A similar results holds
for higher prolongations.?

Example 6: Holmes-Rand Nonlinear Oscillator.

Consider an application of stability analysis based on the
relation between entropy production and the Lyapunov
function to a benchmark as a Holmes-Rand oscillator

F+{a+ P k—yx+x =0,

where a, (5, and y are parameters. System (38) closely re-
sembles the Duffing-van der Pol class of nonlinear oscilla-
tors. Rewriting Eq.(38) into a set of two first-order
cquations, we get

x=y, y=—-(0+p)y+yx-x.

The invariance requirement under infinitesimal transfor-
mation (37) is written as

- 2Bxy + 7 - 3x%) - o + B

An ansaiz for 1, and v); are pelynomials in variable y to
have a nontrivial set of Lie vector fields:

T.h=7flz= ﬁ2=(

M= g ray+ay; o= bi+by+ by,

where ¢; and by, { = 1, 2, 3, are functions of ¢ and x alone.
We get a four-parameter symmetry group™ where asso-
ciated vector fields and the dynamic vector field

X - y— [(Bx +)y+x R ,x]

are associated with Eq.(38). From Eq.(40), it follows that

dynamic system (38) has specific symmetries for o = 4 and

Y= % Integral of motion 7 for Eq.(38) for choice o =

4 and o = - % is
P B
I = exp[(3/B)}] [x+ 3t Ex] ........ (41)

and we end up with a first-order inhomogeneous Abel’s
equation:

N PO | 3

X+IPp+Sx = Texp[-(ZN] ... L. (42)
3 B B

The Holmes-Rand nonlincar oscillator does not pass the

Painleve’ test because it admits a movable algebraic branch

point. It has been pointed out that there exist second-order

systems that are non-Painlevean but nevertheless possess
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one integral of motion and hence are integrable. Choice a

= é and y = —% of the Holmes-Rand nonlinear oscillator
belongs to the above category.™
The Lyapunov function for system (38) is described as V

= lJc +U(x), where U = l)c -

3 7 yx The entropy production

. .o dS 2.2 . .
rate in system motion is P (o + Bx")x". Eq.(38)} is written

as X + (o0 + P )x + Z*U = 0 and, after multiplying the left
X
. . . e 5. al .
part of this equation on x, we obtain (x + (o + fx ) + a—)x
X

.. AU,
= 0. The value 4v calculated as v = xx + —x and after a
dt dt ox

simple algebraic transformation we obtain

a1
i~ T

where T is a normalization factor.
An analysis of relations in Eqs.(41)-(43) shows that spe-

cific symmetries of Eq.(38) for o = % and y = - [% with

dynamic vector ficld (40) produce maximum stable non-
equilibrium states with minimum production entropy.”

For g = 0 from Eq. {38), we obtain the cquation of motion
of the force-free Dutfing oscillator and for exactly the same
parametric choice 2¢° = 9y the Panlevean property holds™*
for this equation. In this case® integral of motion / =

4 ey 2o 4 L, 200 .
Lexp o [x + RO 4 X+ gax]. The relation in
q.(43) is’true with the Lyapunov function as for the Hol-

mes-Rand oscillator and % = o
Eqgs.(8) and (43) describe a generalized relation between

Lyapunov functions V (qualitative measure of mechanical

. S
motion) and an entropy productmn —_ (quantltanve meas-

ure of thermodynamic behavior). For a=-1,3=1,y=-1
and without nonlinear term x>, we obtain the result for the
Van der Pol oscillator.””

2.2.3. Entropy Production Rate and Symmetries of Sto-
chastic Dynamics

For the n-dimensicnal dynamic system admifting an n-
linearity independent Lie symmetry vector field, the prob-
ability density function is found analytically in terms of
these symmetries. For dynamic systems with a vector field
having constant divergence and a first integral, the prob-
ability density function is written in term of these. The en-
tropy production ratc is calculated analytically for these
systems.” In general, the form for dynamic system ¥ = f(x,
i =1, 2, ..., n), x € G and associated probability density
function p(x, 1). Liouville’s theorem is

-+ L) plx, DR =

where Q = V|g[dx" a dx? A ... A d¥", g = det(g;;} and A stands
for the exterior product, Lg is the Lic derivative, F = f'(x,
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d
t‘); This leads to a partial differential equation
X

2‘:+f"‘ P pdivF =0 (m = 1,2,...n). . (45)

Dynamic system (44) is invariant under the Lie group by
the symmetry vector field (infinitesimal generator):

) ., J
X' = n'%+r(x,t)f (= 15200 5 « 5 (46)
X

ot

if infinitesimal n’d(x, t) and t(x, ¢) satisfy the system of
partial differential equations

an’

=L, 0 =n(x0-t0f(x0).

Vector field X = n'(x, I)T;_" is called evolutionary repre-
X

sentation™ of the symmetry vector field given in Eq.(46).
If the dynamic system given by (44) admits an n-linearly
independent symmetry vector field having evolutionary rep-

; ; ; d ..
resentation of form X; = n\(x, ), ..., X, = i(x, r)ﬁ; (15 <

i, =1, 2, ..., n) then Liouville measure wW(G) = f p(x,

GCTr
1Q is written with probability density function p(x, 7) =
1

X x| ... | xQ

free symmetry vector field X; enjoys commutator relations

and n-linearly independent divergence-

28)

X, X = D CiXi G, kI = 0,1,2, ..,

jel<k

n-1) (48)

where Cjy are structure constants. If one of the first integrals

for system (44) is known and given by I(x, 7), then p(x, ) =
|, 1)

X | X2 ] ... | X9

the vector field has constant divergence and a first integral,

the PDF is written as p(x, 1) = |I(x, f)|exp{-ar}, where & =

is also a probability density function. If

af m .
S 5 constant.
The entropy production rate is written
. dS d af m
== =—[|-+Ls - .49
S= (m +L;]pln PR = o (49)
GCT GCr

The entropy production rate in symmetries and first in-
tegrals is expressed as

[;‘—S = f 1 6me and
! GCI’“IXIJ X ...JX,,Q| 0x

B_g e ol of",

o GcrIXIJXzJ JX,,Q| ax™

Consider a general case of a stochastic dynamic Stra-
tonovich system defined on some domain U in Euclidian
space R" as
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dv, = blx, 1) di+ Y g{x, 1) o dw],
r=1

Xy= e, t€1=[toT). oot (50)

where w, = (wf);- is an m-dimensional standard Wiener

process. Rcf 29) defined differential operators on U by d, =

a n

— Xn E b’— X, = E g,.— It also defined function y
i=1 i=1

= ¢(x, 1) as a transformation from U x I — U. Function ¢

is a symmetry transformation for stochastic dynamic system

(50) if the function satisfies

b(d(x, 1), 1) = (0, + Xo)o(x, 1),
2ot 0,0) = Xl ). . . ..o (51)

For stochastic differential Stratonovich equations and
Eq.(51), we have the following differential equation describ-
ing process y, = ¢(x,, ) as

dy, = (3, + Xl 1) di + Y X9(x,, ) o dw]

r=1
m

= by, ) di+ Y guthodw), ... ... (52)

r=1

where x, is a diffusion process governed by Eq.(50). This
means a stochastic dynamic system described by Eq.(44) is
invariant under transformation satisfying Eq. (51). Such a
transformation is called a symmetry.
If y = ¢(x, ¢, a) is a local one-parameter transformation
generated by differential operator Y = 2 i A r)% onU, f
i=1
= (f )i~ is an R"-valued smooth function, a is a parameter
onJ = (-ao, ao), ¢(x, y, 0) = x then one-parameter transfor-
mation y is a symmetry transformation of stochastic dy-
namic system (50), if operator Y satisfies

where [--] denotes a Lie bracket. Egs. (53) are equivalent
to

n ) a ) n ) a ‘

. X ! = "7_ f‘ z 1 s 17‘ ‘,

(4, + Xo)f 21’ b Xf Elf P
o I

(=T r=Tm) (54

Operator Y satisfying (53) and (54) is a symmetry opera-
tor of Eq.(44) and has similar properties for description of
the entropy production rate in symmetries vector fields.

4. Definitions and Simulation Results of En-
tropy-Like Behavior of Benchmarks as
Typical Dynamic Systems

Box SSCQ in self-organized Al control (Fig.2) for cal-
culating the entropy production rate in control objects and
in control systems. We cite as an example benchmarks of

Vol.3 No.2, 1999



Computational Intelligence for Robust Control Algorithms

entropy production calculation for coupled nonlinear oscil- 2. Duffing Oscillator Model
lator models described by ordinary nonlinear differential s 320
equations of motion. APAERL =

Entropy Production
4.1. Definition of Entropy Production Rates of Bench-

marks as -1

The thermodynamic model representation of dynamic dt
equations of motion for a control object (Plant) in a general 3. Holmes-Rand (Duffing-Van der Pol) Oscillator Model
form as closed and open dynamic systems is developed in
Ref.2). Based on this, the analysis on Plant’s postural sta- +(F-1Dx-x+x =0
bility control is done and results of computer simulation is Enitropy Production
compared.

Let us introduce results of entropy production calculation das _ l(xg 1)
and dynamic behavior for typical systems as dt T '

1. Van der Poll Oscillator Model
am der Folt Lscifiator fHode 4. Duffing Oscillator Model with paramelric excitation

¥+ -Dx+x =0 of dissipative force
Entropy Production ¥+ k(1 +Asinot)x —x +x° = 0
% _( 2= 1) Entropy Production

3 ,||) |'H|'f'f|_

:; kR | ?. '|\ |‘ :T' ;I I ]

\ Iiu..l,.‘.“. \‘ . B

“[ a. II ‘.‘ lI IJ \J Iw "‘ ‘I‘ ‘ | 4 v P

0 o

rrsr

c ' d
Fig. 3. Simulation results of entropy-like behavior for Holmes-Rand oscillator. a: Free motion with initial states xo = 0.5; xo = 0.2;
b phase portrait; ¢: temporal entropy-like behavior (entropy production rate); d: 3D simulation entropy-like behavior.

A

Fig. 4. Simulation results of entropy-like behavior for Holmes-Rand oscillator with symmetrics - a = %, y = ~¥3* a: free motion
with initial states xy = 0.5; Xy = 0.2; b: phase portrait; c: temporal entropy-like behavior (entropy production rate); d: 3D simulation
entropy-like behavior.
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ﬁ _ E (1+ Asinmt))'rz wriite final results as follows:
dr T
av ..o 2 g1 2 -2
Also consider the Lyapunov function as PRSIV VRS Dy =0. .. (58
=2 -2 2 2 2
_ ALy ey al-yy -
V= (2 to ST Y= 0,...(59 From Eq.(58), it follows
In this case, dv AN
_ il ‘EE' ................ (59)
i=1

%/ = XX + PV + X0 + ¥y + ofxx - Xy - yx +yy), (56)

From Eq.(59), we get the law on additive properties of
entropy production in dynamic systems.
In a more complex case as

The dynamic system with Lyapunov function (55) is a
system of two coupled nonlinear oscillators as

Ve +y -ly+y+ay-x) =0 V=

{3"+(f+x2—1)5f+x+“(x‘y) =0 (57)
+

(ST
r2 | T
Mﬁm

zg)f a[x~y] - 2)°

-2 2
Y x
ty st 5 Y,

After multiplication on x and y in both equations of sys-

tem (57) and after simple algebraic transformations, we we have

- \ Local

' Unstability
T T R ) [ *; R W T % w R W %
a o t, Time
220
ds ds
dt d dt =
100 . L I
!i - !
i * i
i »
°
"] -0
-
- Local Unstable -
" K
5 EN
— » 1]
§
¢ f

Fig. 5. Entropy analysis of stability of nonlincar parametric dissipative Duffing oscillator: a: temporal behavior of oscillator with
initial states xp = —1.75, xp = -1, A = 5; w = (L.1; b: the phase portrait; ¢ temporal entropy-like behavior with local unstable states;
d: power distribution; e: 3D simulation of entropy-like behavior with one unstable state; f: 3D simulation of entropy-like behavior
with » unstable states.
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¥+ (- x+x+ox+y-2) =0
4+ 4y -y +y+aly-x+2) = 0.
4@+ -1z+z+alz-x+y) =0

av _ 1dS dS 1.2 2. @S _
ma o LB A8 Ly e e B
i=1
. o a8 s :
J*(ﬁ T ) e l(Z2 + 27 - D)2, for three coupled
T dt T

nonlinear oscillators.

4.2. Simulation of Entropy-Like Behavior of Complex
Dynamic Systems.
- Dynamic systems with one DOF: Consider the bench-
mark of a dynamic system as a Van der Pol oscillator. The
result of integration of a differential equation for mechanical

Computational Intelligence for Robust Control Algorithms

motion together with the equation for the entropy production
ratc is shown in Fig.3, where the system is in local unstable
cquilibrium states. Figure 4 shows the result of Holmes-
Rand oscillator behavior with symmetries. In Fig.4c, the

oscillator with symmetries (¢ = %, Y —5—2 ) produces less

entropy according to symmetries analysis of the Holmes-
Rand oscillator. Figure 5 shows simulation results of en-
tropy-like behavior in dynamic systems with parametric
excitation. Periodic solutions and bifurcation behavior in a
parametrically damped Duffing equation in terms of Floguet
theory were studied.™ At the stability boundary of solutions
x = =1, x =0, a common feature is that one of the eigenval-
ues of stationary solutions is always —1 and bifurcation is
rather rich along the boundary. Dynamics differ and are
interesting as parameters are valued to cross different seg-

Y ¥ f\ Y
N P sou AN \ T
. \W\:‘*;- . v\ e
AN oo . SN o A Vv 7
RIAYAY el N A
RERY) S R i s e T\
V X | e AV
"0 i Tao s Ts0 To0 vy 3 s L Y AR P T T AR ..,V., IR RS O zoxu
“:70 109 \.;oa 200 F] N b !: .
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o \\ \ R e 2, A
A o 000
S B N\ —— . \‘ S ol s -
" . ) o N
- dXick . et :: A i
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Fig. 6. Temporal behavior of mechanical motion of two coupled van der Pol oscillators: g-c: phasc portraits (x, ¥); d-f: velocity phase
portraits (x, ¥); g-I: phase portraits (x, x); j-I- phase portraits (y, ¥).
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ments of this boundary. Numerical results shows that a pe- produce the stationary entropy production rate and a change
riod-two solution arises via period-doubling bifurcations at of the frequency of parametric excitation brings up local
A = 5.385. The regions of various types of motions heavily instability. A similar effect is described for equations as

overlap, indicating the coexistence of multiple attractors. In

OVLr]dppﬁ-d regions, at one paramf.:ter po-m_t,. the systerp is ¥+ (Qusinwdi + ase’ = .

attracted in different orbits, depending on initial preparation. {cosCd — x)

At parameters o = 1.45 and A = 5.38 + &.5, there are five

altractors. In addition to the pair of stationary solutions, where © = 0.04 and Q@ = vZ°Y for dynamic path planning

there exists a pair of single-well period-one solutions and a of a mobilc robot in nonstationary obstacle environments.
symmetric period-two solution. Boundaries of basins of co- - The dynamic systems of two-coupled nonlinear oscilla-
existing attractors clearly form fractals.”” As 2.1 = o = 2.49, tors: A system of two-coupled Van der Pol oscillators show-
system motion after instability is be larger-scale cross-well ing multistable behavior for some control parameters is
chaos via intermittency; at the critical point, one eigenvaluc studied.™ Tt is fairly well cstablished that the dynamics of
of stationary solutions is still -1. However, as @ = 2.1, very simple physical systems are quile complex if sufficient
system behavior becomes period-double bifurcation after nonlinearity is present. Model equations of two-coupled
stationary solutions lose stability (Fig.5). Strange attractors Van der Pol oscillators are as follows:
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Fig. 7. Simulation results of temporal entropy-like behavior of two coupled Van der Pol oscillators: a ~ ¢ - the phase portraits (5~dS/dt);
d-f: phase portraits (S;.8,); g-/. phase portraits (dS,/dt - dSo/ds); j-I; phasc portraits (S1.dS./dt); m-o. phase portraits (82-dS2/dt).
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Fig. 8. Simulation results of temporal entropy-like behavior of nonlinear dynamic system (62): a: temporal behavior of mechanical
motion (B1=p2=0.3; w;=1.5; wr=4; k=4; [=0.5) with initial states xo = 1; yo = 0; Xo = yo = 0; b: phase portrait (x, x); ¢: phase portrait
(v, ¥); d: temporal behavior of entropy production rates; e: temporal behavior of entropy production.
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Fig. 9. Simulation results of temporal entropy-like behavior of nonlinear dynamic system (62): a: temporal behavior of mechanical
motion (Bi1=P>=0.3; w1=1.5; wr=4; k=4; [=0.5) with initial states xo = 1; yo = 0; X9 = ¥y = 0; M=5; b: phase portrait (x, x); ¢: phase
portrait (y, y); d: temporal behavior of entropy production rates; e: temporal behavior of entropy production; f: random disturbance
U(t) with a0 = 0.5; 03 = 2: 0 = 1.

linear oscillators; and one moderately nonlinear and the
other quite so. For system (60), the characteristic polyno-
mial is explicitly expressed”’” as

X+ (x+By]-8)x+(x+py) = 0 -
j;+([y+w]—gz)k+(y+ax) — 0, .....

where a, 3, &, and E; are parameters. The coupling consid-
ered is interpreted as a perturbation of oscillator amplitude
through a signal proportional to the amplitude of the other.

In general, three cases (coupling in three regimes) con-
sisting of values for &, & = (0.1,1); (1,1); and (1,2) . For
first case (0.1, 1), one oscillator is almost sinusoidal and
other moderately nonlinear; two exactly moderately non-

- (& + Ez)w +(2+ E]E:)ﬁ
—E+EA+(1-af) =0,. . ... ... (61)

and depends only on three parameters (§; + &, §,E, and
af) and invariant under transformations (§; < &, a < f3).
If af = 1, the manifold of equilibrium points is found to be
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aline in R’, x = ¢ = 0, x = —By. For this special combination
of coupling parameters, many infinitcly new equilibrium
points appear, and is a nonstandard feature of model equa-
tions studied. If aff < 0, dynamics become richer in all cases
studied. We concentrate mainly on the eff < O region of the
coupling parameter plane. The computation mode to clarify
the attraction basins’ structure for Eq.(60) concentrates
mainly on two combinations of control parameters, called
Case A and Case B.*? Case A carresponds to £y, & = 1.0,
a =[0.2,0.7], B = -1.75 while Case B corresponds to &; =
1.0, & = 2.0, @t = |0.96, 1.0955], B = ~(L.75. Several altrac-
tors cocxist in both cases, giving rise to a nontrivial structure
of corresponding attraction basins. The main difference is
that while, in Case A, symmetric asymmetric attractors co-
exist for some range of control parameter a, in Casc B, only
asymmetric attractors arc found for « > 0.98. Another dif-
ference is that, in Casc A, all attractors are chaotic, while
in Case B,*? they begin with two asymmetric chaotic attrac-
tors (coming from the symmetry-breaking bifurcation), then
two asymmetric limit cycles appear (for o = 1.0055}), and
for higher values of both, chactic limit cycle attractors sutfer
a series of bifurcations.

We discuss entropy-like behavior of a dynamic system
in Casc A. For a in intervals [(1.2,0.48] and [0.52,0.7],® two
asymmetric chaotic attractors are found, while for a in
[0.483,0.51], another symmetric chaotic attractor is added.
For o near symmetric attractor creation or destruction, the
basin structure consists of zones where both basins are
clearly separated and others where both basins and self-
similarity occur atf a smaller scale. The uncertainty exponent
is significantly lower outside bifurcation (o = 0.5) than for
a = .5, where a symmetric attractor is also found. Figure
6 shows full dynamic behavior of two coupled Van der Pol
oscillators. Figure 7 compares entropy-like behavior be-
tween different strange attractors.

Consider simulation results of entropy-like behavior for
dynamic systems as

F+2px+wi{l-kv) =0
§ 1 yoe (62)

" ) . A
a1 2 _ A,
¥+ 2Py + way + 2l(xx +3x7) ML(t)

where (31, 32, UJ%, w3, I, M, and k are parame(crs.
Figure 8 shows free motion and entropy-like behavior of

Eq.(62) for U{r) = 0. Entropy production rates %?S = 2[31,\':2;
&S -3 . o .
o 2P2y” are equal to transport of the kinctic energy of
both oscillators. Figure 8 shows the effect of kinetic cnergy
(entropy) transport from x axis vibration to y axis vibration
and vice versa.

Figure 9 shown stochastic entropy-like behavior of Eq,
(62) when stochastic process U(f) is a Gaussian random
process with autocorrelation function Ri(t) = obe™Meoswrr.
In random excitation, the entropy production in dynamic
system (62) decrcases for both oscillators similar as in a one
DOF nonlincar oscillator.™ These results of entropy-like
behavior simulation arc used as a fitness function of GA in

Parts 2 and 3 for optimal intelligent robust control.
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5. Conclusions

Relations between the notion of the Lyapunov function
(stability conditions), cntropy production (thermodynamic
behavior), and the physical realization of approximate
mathematical models describing irreversible relaxation
processes in closed nonlinear dissipative dynamic systems
were studied. Thermodynamic criteria (positive entropy pro-
duction rate) as a physical measure for realizing a mathe-
matical model describing relaxation processes is introduced.
These criteria indicate the necessity of putting extra (ther-
modynamic) limitations on parameters of differential equa-
tions and on symmetrics properties describing the evelution
of nonlinear dynamic systcms. A similar relation between
Lyapunov functions and an entropy production rate in open
dissipative dynamic systems with entropy structure ex-
change in Parts 2 and 3 were also studied.
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