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The biomechanical rabotic unicycle system uses internal
world representation described by emotion, instinct, and
intuition, The basic intelligent control concept for a com-
plex nonlinear nonhelonomic biomechanical systems, as
benchmark the extension-cableless robotic unicycle, uses
a thermodynamic approach to siudy optimum control
processes in complex nonlinear dynamie systems is rep-
resented here. An algerithm for calculating the entropy
production rate is developed. A new physical measure,
the minimum entropy production rate, is used as a Ge-
netic Algorithm (GA) fitness function to calculate robotic
unicycle robustness controllability and intelligent behav-
ior. The interrelation between the Lyapunev function —
a measure of stochastic stability — and the entropy pro-
duction rate — the physical measure of controllability —
in the biomechanical model is the mathematical back-
ground for designing soft computing algorithms in intel-
ligent robotic unicycle control. The principle of minimum
entropy production rate in control systems and control
object motion in general is a new physical concept of
smart robust control for the complex nonlinear non-
holonomic biomechanical system, as henchmark, exfen-
sion-cableless robotic unicycle,

Keywords: Autonomous extension-cableless robotic unicy-
cle, Soft computing algorithms, Robust Intelligent control,
Posture stability, Controllability

1. Introduction

This article introduces flexible design of soft computing
algorithms for intelligent robust control of advanced robot-
ics as an extension-cableless robotic unicycle (Fig.l). As
benchmarks of advanced computational intelligence, we dis-
cuss in detail soft computing algorithm applications based
on a new fuzzy simulation structure, fuzzy ncural nctwork
(FNN), and GA to intelligent control of extension-cableless
robotic unicycles (control objects, Fig.1). The artificial ex-
tension-cableless robotic unicycle life (Fig.2) is described
using internal world representation.”

Intelligent mechatronics is based on results of new non-
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linear mechanical system motion, modern control, and intel-
ligent computation in developing smart control algorithms.
The extraction of knowledge from new movement is based
on benchmarks. Unicycle motion is described as nonlinear
nonholonomic, global unstable, and dynamic system. Re-
lated research on dynamic systems is interesting for non-
lincar mechanics to develop new nonlinear effects research
and for modern control theory to develop new intelligent
control algorithms.

The development of a benchmark algorithm and control
system, such as an robotic unicycle, requires a new calcula-
tion — computational intelligence.

The physical feature of benchmarks is that unicycle con-
trol is rcalized by a skillful human operator. The unicycle is
studied as a biomechanical system including new phenom-
ena in control such as intuition, instinct, and emotion. It is
an algorithmically unsolvable problem for advanced control
svstem theory based on conventional calculation. Control of
unicycle movement is based on logical coordination of com-
plex movement components (pedaling and movement of the
operator’s trunk}. Change in coordination types sets up new
movemenis — straightforward movement, obstacles avoid-
ance, dancing, and jumping. The unicycle is a good example
of a simulator for rehabilitation and training in the use of
artificial limbs.

The control of nonlinear global unstable objects such as
the unicycle requires new control system. We introduce a
new physical control principle: the minimum entropy pro-
duction rate in control systems and in control object motion
in general. The physical measure of entropy production rate
is a GA fitness function. Such an approach ensures the
global dynamic stability of the control object and provides
robust control. Based on this approach, we developed self-
organized Al robust control system design with a physical
measure of control quality with new intelligence fecdback
{Fig.3). Innovative intelligence feedback is based on intel-
ligent computation principles. In off-linc mode based on a
developed algorithm, entropy production is calculated in
movement and control. Based on the entered fitness func-
tion, GA selects an optimum solution from all possible so-
lutions as laws of change for PD controller paramcters. The
developed control law is an FNN teaching signals used in
training and adaptation to the control law. The FNN output
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sion-Cableless Robotic Unicycle

signal forms the Fuzzy Controller (FC) lockup table.
Lookup tables, change the PD controller parameters.
Earlier similar unicycles were considered only from a
mechanical model with application of the advanced control
method (ACM) or a simplified hybrid fuzzy PD controller

{FPD) (early robotic unicycle). This does not provide global
dynamic stability to control objects and robustness control
system. The ACM and intelligent control must be applied
based on studying of skilled operator (Fig.d).

A unicycle is only a mechanically unstable model with-
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out an operator; without skill and adaptive intelligence con-
trol, the model remain uncontrolled and unstable. The basic
research concept is studying of a nonlinear biomechanical
extension-cableless robotic unicycle model taught based on
accessible soft computing tools to create robust intelligence
control system, as detailed below.

Remark 1. A new physical measure, the minimum entropy
production rate for describing intelligent dynamic behavior
and thermodynamic stability condition®™'” of a
biomechanical model with Al control for the robotic unicy-
cle are introduced. This physical measure is used as a GA
fitness function for computer simulation of the intuition
mechanism as a global random search for decision-making
about optimum control of global stability in the robotic uni-
cycle throughout the full space of possible solutions. Instinct
mechanism simulation based on FNN is local active adap-
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tation process with the minimum entropy production rate in
learning by the vestibular system teaching control signals to
model representation results.” Unlike in some papers,*” our
computer simulation uses thermodynamic equations for mo-
tion”'?? of the robotic unicycle. Entropy production rate and
entropy measures for robotic unicycle motion and control
are calculated directly from thermodynamic equations of
motion.

From fuzzy simulation and soft computing results based
on GA and FNN, intelligent behavior controllability and
postural stability of a robot is improved by 2 fuzzy gain
schedule PD controllers over that controlled only by a con-
ventional PD and a fuzzy gain schedule PD controller.” We
confirmed that the proposed fuzzy gain schedule PD-con-
troller effectively handles system nonlinearity in robot pos-
ture stability control. The principle of minimum entropy
production rate quantitatively measures controllability and
qualitative explanations. Our new benchmark controls un-
stable essentially nonlinear nonholonomic dynamic systems
by intelligent tools**"” based on a new physical robust con-
trol concept (Fig.5).

We developed Al control hardware and software for the
extension-cableless robotic unicycle in real world applica-
tions, describing its main components based on soft com-
puting and fuzzy control. For the robotic unicycle, we use
soft computing to change structures or parameters of 2 PD
controllers with adaptation and achieve stability motion of
unicycle over long (finite) time intervals without changing
the executive level of control. The background to this ap-
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proach is qualitative physical analysis of unicycle dynamic
motion and the introduction of intelligent control realizing
instinct and intuition based on FNN and GA.

2. Biomechanical Qualitative Control Model
with Extension-Cableless Robotic Unicy-
cle Model

A human rider controls a unicycle using torso, shoulders,
and arms quite complicatedly and not always symmetric to
the wheel’s principal axis. The improved unicycle model”
involves 2 unique, characteristic structures — an overhead
rotor on the torso (body) and a double 4-bar closed link on
both sides of the wheel — playing important roles in
biomechanical control.

2.1. Biomechanical Control Model.

Human riding control of a unicycle as a logic-dynamic
hierarchy consists of: 1) a dynamic mechanical human rid-
ing unicycle; 2) unicycle intelligent control decision making
process with different levels of skill operations; 3) logic
behavior for coordination of the torso and feet based on
intuition, instinct, and emotion; and 4) distributed informa-
tion system for cooperatively coordinating biomechanical
model subsystems.” Based on this dynamic control repre-
sentation, we use a conceptual hierarchical logic structure
of distributed knowledge representation for artificial robotic
unicycle life (Fig.2). To describe this life, we use qualitative
physics for internal world representation based on a mathe-
matical unicycle motion model.

Logic structure of biomechanical control for describing
a human riding unicycle include 4 levels: 1) distributed in-
formation with sublevels; 2) logic; 3) support decision mak-
ing; and 4) dynamic mechanics.

Distributed information includes 4 sublevels: 1) physical
and logic of virtual reality; 2) behavior and coordination; 3)
intelligent control with 2 sublevels; and 4) executive
biomechanical. Intersections between horizontal lines of dis-
tributed information levels and vertical lines of logic, sup-
port decision making, and dvnamics of unicycle motion, and
a human behavior as biomechanical control model provide
models for human riding unicycles with different skill in
smart control tools.

Consider some examples:

Example 1: Physical and logic levels of virtual reality. An
intersection of the first horizontal and first vertical levels
(logic) give as a result learning the structure of human riding
unicycle control; an intersection with the second vertical
level (support decision making) corresponds to the level of
the central nervous system (CNS) as biological control; and
an intersection with the third level (dynamic mechanical)
introduces mechanical models of unicycle motion as dy-
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namic system. The logic sum of these sublevels gives the
physical level of unicycle motion description and physical
interpretation of data observation and measurement. The
mathematical background for describing learning is quan-
tum fuzzy logic. CNS functions are realized as a knowledge
base domain of possible virtual stable states. To make con-
trol at so high an intelligent level is not currently possible.

Example 2: On behavior and coordination levels, this struc-
ture include instinct, intuition and emotion. Instinct is de-
scribed in the logical structure as a local coordinator of
fuzzy critic rules and corresponds in control to active and
passive adaptation based on FNN. Intuition is represented
as a global coordinator and realized in control as random
decision making process based on GA. Emotion is described
based on sensor information of unicycle motion and pre-
sented as lookup tables with different semantic expressions
of linguistic describing desirable dynamic unicycle motion,
e.g., fluently and fast. The intersections of 2 distributed
information levels with logical systems, support decision
making, and dynamic system models realize the artificial
brain for self-organization of the robotic unicycle.

Example 3: Intelligent control level is Al control with dis-
tributed knowledge representation®™'”) and includes will and
mind. For both instinct and emotion, new lookup tables are
introduced based on FNN. Intuition is realized based on GA
and dominates action due to the 2 fuzzy controllers. Mathe-
matical tools are based on GA and FNN. Fuzzy simulation
for subsystems realizes soft computing for intelligent smart
control.

From qualitative physics and mathematical simulation of
unicycle motion models, we obtain the domain of possible
virtual stable states described by a strange attractor.™ This
agrees with the fact” that human postural control is highly
complex and the human body sways stochastically.

Example 4: Executive level is physical realization of a
biomechanical robotic system — a vestibular logical control
realized in the robotic unicycle by a balancing turntable. The
neuromuscular system is realized by a closed link mecha-
nisms. Thus, control of a human riding unicycle with differ-
ent intelligent levels of behavior is described as a logical
union of intersection levels of logical systems with distrib-
uted information levels.

Remark 2. Human postural control involves multiple sen-
sory and motor components. As a biological model, we
chose the vestibulocerebellum and spinocerebellum includ-
ing the vermis and intermediate zones of hemispheres. The
vermis is related to axial motor control and intermediate
zones to distal motor control. The vermis and intermediate
zones are based on feedback error learning for closed-loop
control (Fig.2). The cerebellum provides adaptive feedback
control and learns how to execute coordinative and predic-
tive control of complicated controlled objects such as the
trunk and limbs." This adaptive feedback control is overlaid
onto more basic feedback in the spinal cord, brain stem, and
cerebral cortex. Thus, 2 feedback controllers cooperate to
execute robotic unicycle movement. Two compelling rea-
sons exist for regarding the vestibulocerebellum and spino-
cerebellum as adaptive feedback controllers. First, unlike the
lateral cerebellum, it receives information directly from the
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Fig. 6. a) Photo of Extension-Cableless Robotic Unicycle; b) Coordinate Describing the Unicyele Model; ¢} Complicated Model for
Emulating Human Riding of a Unicycle Model. d) Simple Model for Emulating Human Riding of a Unicycle Model.

the periphery sensors. Second, the controlled object in posture
control and locomotion is physically unstable, similar to an
inverted pendulum, and feedback control is intelligent com-
putation essential for the cerebellum for adaptive posture con-
trol. The wvermis receives information about position,
velocity, and acceleration of the head and torso from pro-
prioceptors, visual sensors, and the vestibular organ. Its out-
put is directcd mainly to the medial brainstem and axial
rcgions of the motor cortex. Based on this physiological and
anatomical interpretation, we developed a block diagram

(Fig.2).

2.2. Vestibular System as Contrel of Extension-Ca-
bleless Robotic Unicycle

In the design of a robot modcl (Fig.6a) at the cxecutive
biomechanical level (Fig.2), the rotor consists of 3 bars each
285mm long allocated radially from the rotor center. On the
tip of each bar is a weight (0.9kg) fixed symmetrically as a
symmetric rotor. Using the 4-bar closed links (Fig.6b,c} en-
ables robot posture stability in pitch because acceleration
compensation in this direction is attained by the cooperative
action of the link mechanisms and rotor. Pitch stability is
maintained despite changes in rotor and wheel velocity or
acceleration (Fig.6b-d). Fig.6d shows the simple unicycle
model.
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Remark 3. Our study of rider stability control on a unicycle
began by observing and analyzing logical bchavior of a
human riding unicycle based on a vestibular biomechanical
model (Fig.2) and an intelligent thermodynamic model
(qualitative physical representation) including instinct and
intuition as logical decision making, We found that the
rider’s thighs and shanks for a 2 closed link loop that plays
an important role in the rider’s postural stability control on
a unicycle (Fig.6a-c). Using this, we developed a logic
biomechanical model with 2 closed links and 1 turntable
(rotor) to emulate a human riding unicycle by a robot in-
cluding intuition and instinct control of body behavior based
on soft computing. Intuition and instinct are considered as
global and local search mechanisms for optimum solution
of intelligent behavior and realized based on GA and FNN.
For the GA fitness function, 1 new physical measure is
minimum entropy production for describing intelligent ther-
modynamic behavior in a biomechanical model. We provide
a general measure to estimate mechanical controllability
qualitatively and quantitatively, whatever the control
scheme. The measure is computed using a Lyapunov func-
tion coupled with the changed entropy rate, interrelating
between the skill of the human operator driving the unicycle
{minimum physical expense) and quality of robotic unicycle
control (Fig.7).

The interrelation between the Lyapunov function (stabil-
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ity} and the entropy production rate of motion (control-
lability) in the internal biomechanical model is the mathe-
matical background for designing soft computing algorithms
for intelligent control of a robotic unicycle, Qur work deals
with improving fuzzy simulation of robust intelligent con-
trol with a minimum cntropy production rate based on soft
computing including GA and FNN.

3. Qualitative Physics and Thermodynamic
Equations of Motion for the Extension-
Cableless Robotic Unicycle Model

First, for internal world representation of an artificial
robotic unicycle life, we develop thermodynamic equations
of motion. The robot’s postural stability control is analyzed
and results compared to computer simulation.

Thermodynamic equations of motion for the robotic uni-
cycle with a symmetric rotor are given” as follows,

-1

ac
Mo |Eg o
<~ Bl 4 - C@l7] - D@l - G@)]
_ -Flg, q) ’
dr | _
L dt 4
M(q) o]”[rd - B9, 41 - Cll] - D(q)m][q]
1 0 “F(q, ) of
.......................... 2)

The parameters of Egs.(1) and (2) are described in Ref.8) in
detail. In Eq.(2) S, is the entropy of the robot unicycle’s
motion and 5. is the entropy of both controllers, t; are
dissipate parts of the control torque (for the PD-controller
the dissipate part is described by &4y, 3)). The algorithm for
entropy production calculation in the dynamic dissipate sys-
tems is described.'™?) For stability analysis and computer
simulation of the robotic unicycle’s dynamic behavior,
Eq.(1) are rewritten in the conventional form of ordinary
differential equations as q; = gdqg;, T, 1).

Analysis indicates that the longitudinal and lateral stabil-
ity domain is a strange attractor.” Both are mutually influ-
enced, so the unicycle is cssential nonlinear with its
nonlinear cross braces. This aids in understanding experi-
mental resulis with the galvanic vestibular stimulus for ana-
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lyzing postural adaptation and stability for the unicycle."™ It
also shows that the improved model is closer to a human
riding unicycle as an intelligent robotic system.

Lyapunov Function and Thermodynamic Conditions for
Strability of the Robotic Unicycle. To analyze robot model
stability as essentially nonlinear, we use the asymptotic
method of a Lyapunov function and qualitative physics tak-
ing advantage of the interrelation between Lyapunov and
entropy production rate functions.”” The approach to defin-
ing the Lyapunov function is also used. The Lyapunov func-

tion for the system (1) defined as V = —(E (g7 + 5%)), where

S=8,-S.and g ={x% v 0 &7, [3). Here we use'” the
following interrelation between the Lyapunov function and
cntropy production for an open system such as a unicycle

ds, ds,

dv 2 Glas T O + (S - S)C 0 - 7)< 0.03)

From Eq.(3), necessary and sufficient conditions for
Lyapunov stability of a robotic unicycle are expressed as

ds. a‘Su ds, dS
dr dt

E apiq, T, 1) <

u

i.c., stable motion of a unicycle is achieved with “‘negen-
tropy”” — S, (in Brillouin’s terminology®'} and the change of

ds. .
negentropy rite 7; in the control system must be subtracted

. . ds, .
from the change in entropy production rate 7: in the mo-
tion of the robotic unicycle with the second condition in
Eq.(4). From Eq.(4), the stability measure for the robotic
unicycle is obtained by computing the minimum entropy
production rate of the system and controllers.

Remark 4. From qualitative physics, internal world repre-
scntation of the robotic unicycle has 2 unstable states — 1)
local unstable kinematic equilibrium in the lateral plane (an-
gle of rolling ¥) and 2) a global unstable dynamic state in
the longitudinal plane (angle of pitch §). The 2 corrclation
states must be controlled with 2 fuzzy controllers” — neces-
sary and sufficient conditions for improving control stability
of our robotic unicycle. Approximate rcasoning such as
fuzzy implication A — B realized on FNN plays the role of
a local coordinator between lookup tables of 2 controllers
with parallel-sequential data processing. Coordinated action
between lookup tables of these 2 fuzzy controllers is made
with GA and FNN. Two fuzzy controllers contral transfer
energy with minimum entropy from lateral to longitudinal
plancs using dynamic nonlinear cross braces in the robotic
unicycle model (compensation of transfer cnergy from un-
stable dynamic motion “‘in large’” (Fig.2) to longitudinal
plane based on Eq.(3)). The fuzzy controller in the lateral
plane acts as if ridden by a human operator by organizing
special parametric excitation in nonlinear cross braces.”
These parametric excitations generate energy compensating
for transfer energy from the longitudinal plane in an unstable
state. The unstable state ““in small’’ compensates for the
unstable state “‘in large™ (Fig.2). Stable motion of the
robotic unicycle model results from nonlinear control on an
intelligent level of correlated energy transfer between 2 un-
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stable virtual states. The 2 adaptive fuzzy controllers sclf-
organize control stability on a robotic unicycle using intui-
tion and instinct. We obtain the physical model describing
quantum fuzzy logic controllers in the general form of quan-
tum fuzzy logic controllers for biomechanical systems.'?)
Feedback gains for fuzzy PD controllers were adapted.>*®

4. Fuzzy Intelligent Control of the Exten-
sion-Cableless Robotic Unicycle with
Soft Computing Based on GA and FNN

In our Al control system,m 2 gain schedule PD-control-
lers are used — one for the symmetric rotor and one for
closed link mechanisms. Control torque to the symmetric
rotor is given as

T“=kP3XkJX'Y+kd1Xk4X\;’,

where T, is the torque to the rotor; kp> and kd> are constant
feedback gains; and k3 and k4 are fuzzy schedulers changed
in [0,1] with FNN. Control torque applied to links 2 and 4
are given as

Tos = ~Tou = —~kpy x ky x B = kdy x ko x B, . . . . (6)

where tg; and Tg4 are the torques to links 2 and 4; kp; and
kd, are constant feedback gains; and k; and k> are fuzzy
values changed in [0,1] with FNN.

Remark 5. Biomechanical analysis of posture stability
shows'” that PD control represents the minimum complex-
ity required for stable posture control. Component P (pro-
portional) contains antigravitational forces and compensates
for position errors. Component D (derivative) is anti-Cori-
olis compensation and provides damping action. Parameters
(kpy, kp>) are interpreted as a stiffness (spring constant)
arising from passive and active muscular forces, whereas
(kd,, kd>) is compared to viscous damping as obtained with
a wheel dashpot. Suffice it to say that this is the minimum
complexity anticipated for a stabilized robotic unicycle
model.

Fuzzy tuning rules for ki, k2, k3 and k4 are formed by the
learning system of a FNN.” Fuzzy controllers are hierarchi-
cal, 2-level control systems intelligent “in small” (Fig. 2).""
The lower (execution) level is the same as a conventional
PD controller and the upper (coordination) level consists of
a KB with a fuzzy inference module as production rules with
fuzzy implication, fuzzification, and defuzzification compo-

1 1 PD-GA

20

) 2 0 3 DL

Temporal thermodynamic behavior of the Yaw.

nents.

S. Simulation Results Due to the New Physi-
cal Measure for Mechanical Control-
lability

Using the proposed control, we conducted computer
simulation. In the first case, GA simulates an intuition
mechanism choosing the optimum structure of the PD con-
troller, using the capacity of the fitness function, which is
the measure of the entropy production rate and the evolution
function, which is entropy.”

5.1. Simulation Results

Figure 8 shows simulation results of the temporal ther-
modynamic behavior of the robotic unicycle with PD-GA-
controllers and a FNN-controller for the complicated robotic

unicycle model. To calculate entropy production rate %

(yawing angle), %ﬁ (pitching angle), % (rolling angle), we

used 452, 201, and 409 dissipative terms. From simulation

results, we found that relation % > t% from Eq.(4) is true

and the GA finds optimum parameters for PD controllers
with a simple structure using the minimum entropy produc-
tion rate. The FNN controller offers a more flexible control-
ler structure with smaller torques, and learning produces less
entropy (Fig.8) than GA: An instinct mechanism produce
less entropy than an intuition mechanism. Time required to
get optimum control with learning on a FNN (instinct) is
longer than with a global search on GA (intuition).

Figure 9 show simulation results for mechanical (phase
portraits) and thermodynamic behavior of the robotic unicy-
cle with FNN-PD controllers for the complicated unicycle
model with new model parameters.

Figure 10 shows 3D simulation results of mechanical
and thermodynamic behavior of the robotic unicycle with
PD-GA-controllers for the simple unicycle model.

These results confirmed finding the optimum decision in
an application hybrid FPD for changing parameters of feed-
back based on approximate reasoning, based in turn on the
minimum entropy production rate as a physical measure of
control quality. As results show, the entropy production rate
in rotor control is greater than in link control, as is proved
by experiments below.

s 190y
S—T |
T L
t anw

3

-y

tsec)

Temporal thermodynamic behavior of the Pitch & Roll.

Fig. 8. Simulation of Thermodynamic Behavior of Control in Yaw, Pitch, and Roll
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Fig. 9. Simulation of Robotic Unicycle Control and Entropy Production Rate with FNN-PD Controller for Complicated Mathematical

Model with New Model Parameters

For the fuzzy gain schedule, hybrid PD controllers are
proposed in Ref.5) for the robot’s postural stability control.
Simulation based on the FNN with the minimum entropy
production rate are used to obtain lookup tables for feedback
gains that change fuzzy rules of approximate reasoning. This
enables us to use instinct and emotion during the experiment
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Journal of Advanced Computational Intelligence

without calculating them in real time. For the robotic uni-
cycle, we use this for a fuzzy gain schedule PD-controller.

5.2. Simulation Results for Fuzzy Gain PD-Controllers
In deriving dynamic equations of motion for the robot,
coordinates of the new robot configuration are shown in
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Fig.6b.

Results obtained with 2 fuzzy gain schedule PD control-
lers. We consider 2 fuzzy gain schedule PD controllers —
one is for the rotor and one for closed-link mechanisms. The
torque to the rotor is the same as that in Eq.(5) and the torque
to links 2 and 4 is given in Eq.(6).

Simulation (Fig.11) showed that the proposed control is
effective in achieving postural stability maintained over a
fairly long time. Simulation results show that the roll angle
is efficiently stabilized around zero and the pitch angle sta-
bilized around a small positive value, indicating a need to
stabilize pitch angle at a small positive value, not zero, to
maintain postural stability.

Comparison with results above indicates postural stability
is not influenced much by the robot’s initial posture. Simu-
lation results show postural stability is achieved if both initial
pitch angle || and initial roll angle |y| are less than 0.1 rad.

6. Experimental Results

The new extension-cableless robotic unicycle (Fig.6a)
consists of a wheel with 2 cranks, a main body, an overhead
rotor, and 2 closed links on both sides of the wheel. The
closed link mechanism is used for a longitudinal stability
and the symmetric rotor for lateral stability. Four motors
were used for the complicated model, and only 3 motors for
the new extension-cableless unicycle model. For the old
complicatcd4‘5] model, the wheel was driven through a ball
reduction gear, a couple of spiral bevel gears, and a timing
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belt by a DC servomotor (60W) inside the robot. Now the
wheel is driven through close link motors. The rotor is
driven by a harmonic drive motor (old: 34W, new: 60W)
installed on the body (Fig.6b). Left and right closed links
are driven directly by harmonic drive motors (old: 20.3W,
new: 60W) on links 2 and 4 (Fig.6a,b). Links motors are the
same for the symmetric geometrical structure and balance
of the robot.

A 32-bit personal computer is the system controller. The
wheel, symmetric rotor, and closed link mechanisms are
driven by torque-controlled motors with software servocon-
trol. Control programs are written in C.

Three rate gyrosensors (A, B and C) (Fig.6a) on the 3
principal axes of the robot measure angular velocities of
inclination in pitch, roll, and yaw directions. The resolution
of the angular velocity of the sensors is (0, 1deg/s. An optical
rotary encoder (500 pulses/revolution) on each servomotor
detects the angle caused by rotation of servomotors. The
coordinates defined in Fig.6b enable us to calculate the ro-
bot’s posture or Euler’s angle (a, p, y) to global reference
coordinates measured from angular velocity ., w,, and w.
by 3 rate gyrosensors as in Eqs.(7)-(9),

& = f((mxcosﬁ - wsinf)cos™y)de, . ... ... (7)
B = J(o, - (wcosp - wsinptany)dr . . . . . . (8)
Y = f(wxcos’lﬁ + (m.cosP — msinf)tanP)de, . . (9)

where o, is the angular velocity related to Pxs, w, is the
angular velocity related to Pyg, and w, is the angular velocity
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related to Pz, (Fig.6b).

Using small rate gyrosensors adds drift on output due to
time and change of temperature. Drift may adversely affect
calculation of postural angles in the experiment, so we se-
lected sensors with the smallest drift. Experiments were con-
ducted in 8 seconds because drift in sensor output is not so
high.

Remark 6. Because the old robot model wheel was alumi-
num, we had to deal with friction between the wheel and
ground. To keep the unicycle wheel from slipping, we use
a 3.0m x 9.0m synthetic rubber carpet. The unicycle’s initial
posture 1s set by the operator and ground unevenness is
random, so we could not repeat exactly the same results in
experiments even with the same control and feedback gains.

Figures.12-14 show experimental results for the new ca-

Vol.3 No.2, 1999

bleless unicycle model in beginning of experiments (up line)
and now presented (down line), achieving lateral stability
(stability in the roll direction). Figure 12c.f shows that the
robot posture in the yaw direction changes quickly in the
experiment because yaw control ensures lateral stability, the
change in ground unevenness changes the robot’s lateral
posture and this change in the roll direction requires a
change in robot posture in the yaw direction. Figure 14
shows temporal and 3D thermodynamic behavior (entropy
production rate) for 2 experiments (Figs.12 and 13). From
Fig.14a,c,e,g, we concluded that entropy production rates in
link mechanisms are less than in the rotor (the body pro-
duces more entropy than the feet). Experimental results also
indicated that temporal behavior in experiments (Fig.14c,g)
obtained using the minimum entropy production rate in con-
trol is more intelligent than in Fig.14a,e using only FPD.
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The wheel’s average speed is about 1.2m/s, similar to that
of a human rider on a unicycle.

Figure 6a shows the robot’s posture during an experi-
ment. The initial posture is set by the operator, who removes
a hand immediately after the wheel starts to go forward.
Comparing results in Ref.4) and here, we find it much easier
to achieve the robot’s posture stability with fuzzy gain
schedule PD-controllers. If the initial posture of the robotic

unicycle is near the ideal stable posture (ff = 0.0 rad and y
= 0.0 rad), postural stability is obtained in almost all trials.
Postural stability with 2 fuzzy gain schedule PD controllers
is achieved even if posture is randomly disturbed to some
extent by the ground conditions because 2 fuzzy gain sched-
ule PD controllers recover from roll angles as big as in
Fig.10b,e while PD control of the unicycle cannot. Such
recovery shows the excellence of 2 fuzzy gain schedule
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PD-controllers. Proposed control efficiently improves pos-
tural stability and controllability. Figure 13 shows temporal
behavior of fuzzy gains ki, ky, ks, and k. Figure 14 shows
increasing unicycle skill operation. The physical measure of
skill operation decreases the entropy production rate of the
control system,

7. Conclusions

We presented robust robotic unicycle intelligent control
with a background of qualitative physical analysis of the
unicycle’s dynamic motion and the introduction of an intel-
ligent level at the control system by realizing instinct and
intuition based on FNN and GA. The main components of
Al control are based on soft computing and fuzzy robust
control. We adapted 2 FPD coniroller parameters to achieve
stable motion of the unicycle over a long (finite) time with-
out changing the structure of the executive level of control
using soft computing. We introduced 2 new mechanisms to
intelligent control based on a minimum entropy production
rate in the robotic unicycle’s motion and the control system
itself. Simulation of thermodynamic equations of motion
and intelligent control confirmed the effectiveness in han-
dling the system’s nonlinearity of the robot’s postural sta-
bility control. The robotic unicycle model is a new
benchmark for intelligent fuzzy controlled motion of a non-
linear dynamic system with 2 (local and global) unstable
states. The use of a fuzzy gain schedule PD controller with
lookup tables calculated by FNN offers the use of instinct
and intuition in real time to achieve successful experimental
results.
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