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[Mpemtaracres 060buesne urpst [lappono (¢ 3a1yTaHHBIMH COCTOSIHHSA-
MM) M KBAHTOBO Mrpbl 6C3 3a1lyTAHHBIX COCTOHHMIA JUIA NPUMCHCHUS B
CHCTEMAX HMHTCJLICKTYAIbHOIO yiipasicHus. Pacemarpusaercs npumese-
HHE HEMETKHUX KBAHTOBBIX BbIMMCJICHMIT KAK OCHOBbBI /LISl TEXHOJIOIHH CO-
34aHHA CUCTEM MHTC/LIEKTYAIbHOIO yiipas/icHus. [Ipeiaraeres noaxoiu K
AlAPATHON pPeaiM3alMy KBAHTOBBIX BbIMIMCIEHHI 115 MOJACAMPOBAHUA H
CO3/IaHMS CHCTEM VIPABJICHHSA IS LUPUIOKEHHH MHTC/ICKTYAILHON Me-
xaTpoHuKy. ONUCHIBACTCH APXUTEKTYPA CHCTEMbl HHTCILICKTYVAJILHOTO He-
YETKOIO YIIPAB/ICHHS, OCHOBAHHAS HA JIAHHOM lOAXO/C.

New effect in design of intelligent control systems as a generalization of
Parrondo (entangled) game and card quantum entanglement-free game
(without entanglement) is considered. Applied Quantum Soft Computing
(as a tool and background for design technology of robust intelligent
control) is considered. Quantum algorithm game gate (QAGG)-approach
for HW-implementation of fast quantum algorithms in simulation and
design of Al-robotics and smart mechatronics control systems is developed.
Intelligent control system design with wise robust fuzzy controller based
on QAGG-approach is also described.

KuroueBbie €J10Ba: KBAHTOBLIC BbIYHCICHHS, HCKYCCTBCHHbI MHTCIICKT,
KBAHTOBbBIE HI'Pbl, HHTEJUICKTYAJIBHOE PODACTHOE yIpaB/ienue.
Keywords: Quantum gate computing, Al-system, Quantum games, Wise
robust control.

1. Introduction

We cousider the application of the quantum algorithm gate (QAG)-design appro-
ach to the classical efficient simulation of quantum games. In [1| we discussed some
important applications (as example, quantum games and decision-making control
processes in quantum uncertainty of information) of Quantum Soft Computing tool in
Al-systems. Using Benchmark’s method, different quantum paradigms and methods
of Al (on examples from quantum games) are demoustrated in present article. Their
applications in problem solution of theoretical informatics (TI) and computer science
(Grover's QAG) to design intelligent robust control systems of essentially non-linear
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dynamic control objects (as background of intelligent robotics and mechatronics)
based on Quantum Soft Computing models are described. We study a new problem in
applied intelligent control system: design of wise robust control laws using non-robust
particular knowledge bases (KBs) that are designed with soft computing technology.
This problem is correlated with the solutions of well-known Parrondo quantum game
and quantum card game without entanglement. As result, the possibility to design a
wise robust control from non-robust KBs using quantum computing without entangle-
ment is found. This approach is different from the methods of quantum games [1]
where the entanglement plays key role.

2. Quantum soft computing as a new paradigm in simulation of Al-control
systems: Quantum game gates approach

Classical Artificial Intelligence (Al) and Theoretical Informatics (T1) are based on
. the assumption that information processing (taking place in the circuits of a human
brain) can be simulated by classical computation. The basis of classical computation
is the Church-Turing thesis, which says that every recursive function can be computed
algorithmically, provided algorithm can executed by a physical process, Classical
computation is based on classical (Boolean) logic and can be viewed as an embodiment
of classical physics. For example, Al (based on classical model of computation) consists
of two parts: (1) symbolic approach to Al (based on classical Boolean logic) and
its application; (z) soft computing approach to Al based on non-classical logic (for
example, on fuzzy/ probabilistic logic ete.) and its applications.

However, fundamental physical processes are not governed by classical mechanics,
rather by quantum mechanical laws. If, as an example the brain performs quantum
processing, this might be the secret behind consciousness. Recent investigations in
the area of quantum information processing and communications (as a main basic
scientilic goals of Tl and computer science) made clear that the foundations of compu-
ting have to be based not on the laws and limitations of the classical physics as so
far, but on the laws and limitations of quantum physics. The possibility of performing
reversible computation and the fact that classical computers cannot efficiently simula-
te quantum systems gave birth to the concept of the quantum Turing machine as
the generalization of the Church-Turing thesis. This led to a flurry of discoveries
in quantum computation and information, quantum algorithms (QA’s), quantum
simulators, quantum automaton and programmable gate array [2 - 7|. Furthermore, it
might explain several puzzling features of animal and human intelligence and provide
a new direction to develop Al-systems based on quantum computation [8]. Quantum
computation can be viewed as an embodiment of quantum physics and is founded
on superposition of quantum mechanics logic and new non-classical phenomena as
quantum entanglement (quantum correlation) and quantum interference, which are
entirely different paradigms in global optimization and consciousness learning proces-
ses. In general, quantum computing can be considered as a quantum control of
computational process in open information-thermodynamic system [9]. Background
of Quantum Soft Computing is quantum algorithm gate (QAG) design method and
classical efficient simulation system of QAG’s [10 - 13]. We are discussed in [10,
12] a new method of simulation and physical silicon implementation of QAG’s with
applications to robust intelligent control. R&D results in simulation and design of
QAG are described. The developed analysis and synthesis of QAG’s dynamic is the
background for silicon circuit gate design and simulation of robust knowledge base
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(KB) for intelligent fuzzy controllers. The QAG's design method on the example as
Grover's quantum search algorithm is illustrated. In present article, using Benchmark’s
method, different quantum paradigms and methods of Al (on examples from quantum
games), and their applications in problem solution of TI and computer science (Gro-
ver’s quantum search algorithm gate design and simulation), and design of intelligent
robust control systems of essentially non-linear dynamic control objects based on
Quantum Soft Computing model |8, 12, 14] are described.

Game (sce Table 1 in [1]): Parrondo’s Paradoz. The Parrondo’s game is one in
which a random combination of two losing games produces a winning game |15, 16]:
two separate losing games can be combined following a random or period strategy in
order to have a resulting winning game.

Classical version of Parrondo Paradox (Brownian ratchet). Two statistically losing
games of chance as game A and game B are combined following a random or periodic
strategy in order to have a resulting winning game. In the original version of Parrondo’s
paradox [15] it is demonstrated by tossing coins where the coins are biased towards
winning or losing. In particular: (1) game A consists of a biased coin 0, which has the
probability p of winning; (2) game B can be described by the following statement. If
the present capital is a multiple of Mthen the chance of winning ispy, if it is not a
multiple of M the chance of winning ispz. It has been proved [15] that the game A

results a loosing game when the following condition is met: 1—;}—’ > 1 while game B
)M -1

is loosing when%’r—— > 1. A resulting game A @ B can be constructed by
random switching between games A and B with probabilityy. This game is capital-
dependent game. It was established |15} that there are choices of p,p; and ps such
that games A and B are both losing, but the resulting game is winning.

This behavior has been termed Parrondo’s Paradoz. By regarding the current
capital as the statc of a discrete-time Markov chain, it has been shown in [15] that
the paradox exists if the following condition is met:

M-1
1-q@)(1-
( q’q)E;M_?z) >L q=v+(1-9)p; @=yp+(1-7)p
142

In quantum Parrondo’s Paradox, rotation operators (that represent the toss of classi-
cal biased coin) are replaced by general operators from SU (2) to transform the game
into the quantum domain. Comparing to previous realization of classical Parrondo’s
games(A, B), the rotating-vector realization produces a much higher winning rate for
the combined game (A @ B)even though the losing rates for games (A, B)are greater
[16]. In classical gambling games there is a random element, and in a Parrondo’s
game, the results of the random process are used to alter the evolution of game. The
quantum mechanical model is deterministic until a measurement is made at the end
of the process. The element of chance, which is necessary in the classical game, is -
replaced by a superposition that represents all the possible results in parallel. We can
get new behavior by the addition of phase factors in the operators and by interference
between states. The information flow for the case of two games of (A) followed by one
game of (B) is shown in Figure la.

The gameA: The quantum analogue of a single toss of a biased coin. An arbitrary
SU (2) operation can be written as

(1)

S 1 5Y -
& = A - e~ 059 —e~127-%)5ing
A= P(‘)‘) R(G) R((S) = ( E_i‘jz.(q,——d') sin @ eii{‘)’"ﬂﬂ cosf
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game B

previous two results

lost, lost

Figure 1a: Winning and loosing probabilities for game A and the history dependent
game B

where 8 € [-7, wjand v, 48 € [0, 27].
Game B. Four SU (2) operations, cach of the form of Eq. (1), whose use is control-
led by the results of the previous two games used in this game:

B (i, i, 0:) = diag[Ai (¢i, . )], i =1,2,3,4.

Quantum algorithm and Parrondo’s QAG. Operator B acts on the state|ly — 2} ®
[t — 1)@ |i). where |t — 1) and |y — 2) represent the result of the two previous games
and |i) is the initial state of the target qubit. That isB |g19293) = |g1g2b), where
1. G2, g3 € {0, 1}and b is output of gameB. The sequence (AAB)played n times results
in the state as in Table 1 from [1]. The expectation value of the payoff from a sequence
of games resulting in the state |1 f;,) can be computed by

2

& =3[ @-m 3 |(# | va)

3=0 i

) (2)

where the second summation is taken over all basis states wf with j 1's and (n—j)

(0’s. If the initial state is a superposition, then payoffs different from the classical game
can be obtained as a result of interference. We may obtain much larger or smaller
payoffs provided the initial state involves a superposition that gives the possibility of
interference for that particular game sequences.

Cousider the game sequence (AAB)from Figure 1b.

In order to get interference there needs to be two different ways of arriving at the
same state. We need only to choose some superposition not the maximally entangled
state; however, this is the most interesting initial state to study. Choosing GHZ-state
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Figure 1b: The information flow in qubits

as |y") = % {1000) + |111)) the result

($3aB) = é- cos 20 (cos 204 — cos 2¢1)
+1sin%26 cos (26 + 1) sin 2¢0y |
1 — cos (28 + (1) sin 2¢2 — cos (20 + (3) sin 2¢3 + cos (26 + P4) sin 2¢4
| (3)

In Eq. (3) the value of ($7,)depends on the phase angles § and f3; that can
produce a result that cannot be obtained in the classical game. The entanglement
and the resulting interference can make game B in the sequence (AAB) better than
its best branch taken alone. Indeed the expectation for payoff of a quantum (AAB,)
on the maximally entangled initial state vanishes due to destructive interference. An
initial state that is a different superposition may give interference eflects [16].

Remark. In the quantum games, we can see that in the decision-making step the
player has means of communication with each other, i.e., no one has any information
about which strategy the other player will adopt. This is the same as in classical
game. A fascinating property in quantum game is entanglement. Although there is no
commuunication between the two players, the two qubits are entangled, and therefore
one player’s local action on his qubit will affect the state of the other. Entanglement
plays as a contract of the game [16 - 24]. Let us consider involving quantum algorithms, .
in which cooperating with randomness may be a better strategy than trying to fight
it.

Ezample: Grover’s QSA as quantum game [19]. We consider a game where the
player’s goal is to obtain (i.e., measure with a high probability) a fixed, unknown
number a, 0 < a € 2" — 1 in as few time steps as possible. The initial state has the

an

form{ghin) = —= zo .z). In this game, an infinite sequence of operators (quantum
=

oracles) 01 - émwiﬂ be applied to|¢in). The player decides whel} he wquld stop the
sequence, i.c., he has the freedom to choose m such that|¢ fin) = O ... Oy [¥in). The
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payoff is then determined in the computational basis of|[tf;5,). The game is winning if
the player possesses a strategy that wins with probability > % and is losing otherwise.
This game incorporates strategic moves, since the set used by the player to decide
the duration of the game are equivalent to the set of natural numbers N. i
Game A. Here O; = A for alli, whereA (|z)) = (- 1)’ |z). Geometrically, A
reflects the vector |1/i,) aboutla). SinceA? = I, the player's freedom in choosing when

to stop the game always reduces to just one of the following two scenarios: [t/ fin) =
2

Ain) orf¥fin) = |Yin). Unfortunately for the player, the payoff is I(al A [in)

(@ | Yin)|* = 2= which less than is § forn > 2.

Therefore, for player does not possess a winning strategy, hence game A is losing
for him. i . X .

Game B. Here O; = B for alli, whereB = 2|y,) (¥in] — I. Geometrically, B
reflects |1;,) about itself. Again, the player has the freedom to decide how many B
are applied to the input state before measurement. However, since|i;,) = B [%in),

the player can have no influence in determining the payoff in this game. The game is

" hence losing for him because the payoff |{a | w,-n)iz = 2%. which is less than.

GameA @ B. The player combines games A and B at random. By this, it means
O; = A or B with equal probability. Once again, the player has the freedom to
decide when to stop the sequence and hence do the measurement. Since A2=B% =
land|1);n,) = B |{4n), any given finite sequence O; will always produce a final state
with the following form:

[$sin) = (B) AB... ABA|gin) .
Now, numerical calculation suggests that form = 4k,

[¥in) = O Os lttin) = (BA) ... (BA) i) -
k times

It can also be seen that BoA = G is Grover's operator (see Appendix in details). Hence
a winning strategy for the player is to stop after (4k)-th operation whereK = Hm ;

The winning probability is > % and hence we see that this combined game is
winning for the player [19].

We are interested in the classical-quantum game where one player, say A, is
restricted to Seywhile the other, B, has access to quantum strategySp;.

Ezample: Classical-quantum game [23]. As mentioned in [1] (Eq. (2.6)), a pure
quantum strategy U (6, a,3) is an SU (2) operator and may be written as

- e cos & ie*¥ sin &

Ui 8) = ( ie~ 8 singg el cos% ) ;
where 0 € [0,7] and a.8 € [-m,m]. Let us consider the particular cases of this
operation.

1) A classical mized strategy. It can be simulated in the quantum game protocol
by an operator in the setSc; = U (8) = U (#,0,0). Such a strategy corresponds to
playing I with probability cos? g and F with probabilitysin® %. Where both players
use such strategies the game is equivalent to the classical game.

2) Quantum game strategies. When both players have access to the full set of
quantum operators, for any.fl =0 (0, &, 3), there existsB = U (6,a,—F — 3), such
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that

(A@f)—\;—g([(}o)ﬂll =(i ®B)}2.(|00)+lll)).

That is, on the maximally entangled state, any local unitary operation that A carries
out on her qubit is equivalent to a local unitary operation that B carries out on his,
Hence either playor can undo his/her opponent’s move (assuming it is known) by
choosing U (6, ~a.F — 1) in response tol/ (0, v, ). Indeed, knowing the opponent’s
move, each player can produce any desired final state.
3) Classical-quantumn game strategies. In the classical-quantum game where one

player, say A, is restricted to Sgy = { U@ :0¢e 0, w}}whﬂe the other, B, has access

to
SQ,={0(&n4ﬂ:9€[&ﬂLﬂJ3&[—mﬂ”.

In this case [/ (f)doesn’t necessary the same results as a classical mixed strategy
since B can exploit the entanglement to his advantage. Nevertheless we shall refer
to strategies in Sg; as “classical“in the sense that the player does not manipulate
the phase of the qubit. In this situation B has a distinct advantage since only he can
produce any desired final state by local operations on his qubit. Without knowing A's
move, B’s best plan is to play the “miracle” quantum move, consisting of assuming
that A has played with quantum strategy U/ (%) the average move from Sy, undoing

this move by V = U (3.0,3) = -55 ( i —11 )and that preparing his desired final

-1 0

(F ® I) ‘2 (|00) +i|11)), so B can effectively flip A's qubit as well as adjusting his
own
Emmple: Suppose we have a general 2 x 2 game with payoffs [20 - 24]

state. The operator f = ( A ) has the DIOPOWY(i®f) 7‘5“(30) +i[11)) =

Player B: 0 B:1
A: 0 (p.p) (9.9")
A:1 (r,7") (s.8")

where unprimed values refer to A's payoffs and the primed to B’s. B has four
possible miracle moves depending on the final state that prefers:

; ~ i 1% .8 - . 3 =
Mp= V= % 11 Mu= FV= |,
, i 1 : o 5 <4 1
M= fV= S| 5, ;) Mu= FfV= 5| |

given a preference for [00) , [01),]10) and [11), respectively. In the absence of entang-
lement, any M; j is equivalent to U ( ) that is, the mixed classical strategy of ﬁ!ppmg
or not-Aipping with equal probability. When we use an entangling operator J (~) for
an arbitraryy € [0, %], the expectation value of A’s payoff if she play U () against
B’s miracle move are, respectively,

{8pg) = (enn g- + sin g« am-.) + gt:r.m2 (s) cosd v + i (xin g - rnng sin 1} . ! sin? (g)ron
(8g1) = gcml (g\)rm -r+% Eot%fﬂlngﬂlﬂ‘,) +§nln g)ruu w-rigum%—cu-gnln-\')
(810) = ; (rm% — #in gnm -r) + -gcotz {%):m ¥+ ‘5 (uln % + cos :: sin 1) + Sam (%)Cui:

;cuﬁn(g):os ng(cwg Asmgsin‘v} +§nln’(§)con ¥4 a(sln%+:uugnin1)2

($51)
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where primes to p,q,r and s to get B’s payofis are added. Although the miracle
moves are in some sense best for B, in that they guarantee a certain minimum payoff
against auy classical strategy from A, there is not necessarily any NE amongst pure
strategies in the classical-quantum game.

Role of entanglement parametery. In each of the four cases in above mentioned
table there are critical values of the cntanglement parameter 5 below which the
quantum player no longer has an advantage. The most interesting games are those that
contain some sort of dilemma for the players. The games, along with some important
equilibrium, are summarized [1] in Table 1.

A summary of the thresholds for the collection of games is given according to [1]
in Table 2.

In the following, the payoffs shall be designated a,b,c and d witha > b > ¢ > d.
The two pure classical strategies for the players are referred to as cooperation (C)
and defection (D), for rcasons that shall soon become apparent.

Table 1: A summary of payoff matrices with Nash equilibrium (NE) and Pareto
optimal (PO) results for various classical games

Preferred

. Game Payoff matrix NE payoffs PO payoffa Condition strategy (a,b,e,d)

Chiken (‘::’, f:',‘;; (a.e) V (c.a) (b, b) W>ate :’;ﬁz;‘::"’-’ (4.3,1,0)
":;""l’::::;‘ t(: :}’) ((‘: ‘:; (e, ) (b, b) B>a+d D (5,3,2.1)
Deadlock $a ;; E‘; :}’ (b, b) (b, b) W>a+d D (3,2,1,0)
Stog hunt "(‘;::]’ E‘::; (a,a) V (e, €} (a,a) - c (3.2,1.0)
i on Ga  @hvee (@b Ve - Coponsat (21,0

With a sufficient degree of entanglement, the quantum player in a classical-quan-
tum two player game can use the extra possibilities available to help steer the game
towards their most desired result, giving a payoff above that achievable by classical
strategies alone. There are critical values of the entanglement parameter ybelow (or
occasionally above) which it is no longer an advantage to have access to quantum
moves. That is, where the quantum player can no longer outscore his/her classical
NE result. These represent a phase change in the classical- quantum game where
a switch between the quantum miracles move and the dominant classical strategy
is warranted. With typical values for the payoffs and a classical player opting for

his/her best strategy, the critical value for sin-~y is \/g for chicken, \/g for Prisoner’s

dilemma and \/g for deadlock, while for stag hunt and the battle of the sexes there
is no particular advantage to the quantum player.

Table 2: Value of sin~y above which the expected value of B's(A’s) payoff exceeds

Game A's strategy  B's strategy  (Sg) > (84) ($y) > (84)(NE) (8g) > (84} (PO)
v always < \/ﬂ bj3c < nn—h
Chicken ¢ Moy = =
2 Mo1 5 ‘/c_—_d [ab=c=d
a-c L
- T always a-b
Prisoner’s e Mgy etfways 7 c—d
Dilemma D Moy ‘\7‘17,' V= 2b-c-d
- =
==T"
& 2 albayh V/lb a—c 2b-a-c
Deadlock b Mgy F=¢c =
Ny b-d b-d
a=d a=d
—d
N < = never
Stag hunt f) ;:gg &f ‘: T
never < / 1@-_ never
P b
Buttle of (? My :}5 V‘ET% E_E
the sexes T My always ifa+c>2b ifa+e> 2
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Remark. It has been questioned by Peres and Wootters in [25] some times ago
that where more information can be extracted from a composite quantum system
by performing collective measurements on the system as a whole. Several studies
addressed the same question and showed that collective measurements usually provide
more information than the measurements on the individual subsystems. Quantum
entanglement is believed to be responsible for this.

Another question can be addressed for two composite entangled quantum subsys-
tems A and B: Which one of the two subsystems provides more information than the
other subsystem? As an example, we investigate the following quantum card game to
give more insight to the question.

Ezample: Quantum card game with optimal guessing strategy [26]. Three different
quantum cards, which are non-orthogonal qubits are sent to two different players, A
and B, randomly. A receives one of the three cards, and B receives the remaining
two cards form a card dealer. In this game B could know better than A does on
guessing A's card, no matter what B chooses to measure his two cards collectively or
separately.

B'’s best strategy for guessing A’s card is to measure his two cards collectively.

Physical interpretation of game model. The dealer shuffles three quantum cards
randomly and then sends A one of the cards. B then receives the remaining two cards
from the dealer. In the classical world, the three cards are actually orthogonal to each
others and thus are totally distinguishable. Thercfore, A knows her card with 100%
confidence, and B also knows A’s card with 100% confidence by simply looking at his
two cards. In the quantum world, the three cards can be viewed as three qubits and
are in general non-orthogonal to each other. The non-orthogonal forces both A and
B to do measurements on their cards and then make guesses. Formally, the game has
two players, A and B, and one card dealer. The dealer holds three quantum cards,

1

which are non-orthogonal spin-;particles cnsemble

{le) =(1,0), |u2) = (%?) y|[¥3) = (—%?)}

respectively. In the beginning of the game, the dealer shuffles the cards randomly and
gives A onc of the cards. B picks the remaining two cards from the dealer. A and B
does not have the possibility of communication on this step. Both player’s then make
own guesses on what card is in A’s hand. After making their guesses, the dealer will
check their answer and decide who the winner of the game is. Based upon the game
description, we can view the dealer’s cards as a composite quantum system, described
by density (matrix) function p and both A’s card and B’s cards as two subsystems,
pa andpg, of the composite system.

Sbwigasite |1} (W] 4 @ |2ts) (Yavs| g + [¥1) (Y1] 4 ® |Wavse) (Wayalg

system,p  ©) T 1V2) (Valy @ as) (Uatsly + V) (Un] 4 © [Ustn) (Ustul
. + |13) (3] 4 @ ltndha) (Untzlg + |¥a) (V3] 4 @ [thavhr) (Y2th|g

Subsystem, .

ou = Trs (5) 3 (190) (Wrla + [a) (al o + 0s) (sl ] = diag (3. 3

Subsystem, 1 { [nthe) (Wrthe| g + [thathr) (ot | g + [t ¥s) (¥ntds|p }
pe=Tra(p) 81+ [Wstn) (Yarn| g + [W2ta) (P2vis| g + [Whate) (Vatn|g

As above mentioned in the classical world, all cards are orthogonal to each and thus
totally distinguishable. That is, both A and B posses the same information on A's
card: A knows exactly what her card is by simply looking at the card she has, B also
concludes on what A has in hand by simply looking at two cards. Therefore, it is
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not likely for them to gamble. In the quantum world, the non-orthogonal nature of
cards takes parts in this game: the quantum cards are no longer totally distinguishable.
Therefore, the game becomes uncertain and the gambling between A and B is possible:
A no longer determines what she has in hand with 100% certainty and so does B. If
A performs measurement on her card along the direction |¢,) = (cos a, sina) (Stern-
Gerlach measurement), she would obtain the spin-up (or spin-down) result with the
following probabilities: P (up) = Tr {|¢a) (¢a|pa}t; P (down) = 1 - P (up).In the
game considered, A always mea.sur&i the spin-up or spin-down outcomes with equal
probabilities, P (up) = P (down) = §:

no matter what the measuring direction |¢,) is. As shown in Table 2, when the
outcome 7 is obtained after the measurement, A knows a posteriori the probability
P(i|r) for preparation|i;).

A simply cannot determine what her card is with 100% certainty.

The optimal strategy probability of A's. The optimal probability can be obtained
minimizing Shannon entropy. Player A has three strategies: {|13), [¢2), i) V [¥3)}.
. The first strategy is to guess |¢3) for0 < a < §. For example, A can choose the first
strategy to guess her card. When the mea.suremcnt outcome in spin-up, A will guess
her card successfully w1th probablhty g cos? a (see Table 2), and make a wrong guess
with probability (1 — — cos a) When the measurement outcome in spin-down, she
guess the card successfully with probability -3-sm (a + 3) and guess it wrong with
probability (1 ~ Zsin® (a + )) (sce, Table 3).

Table 3: Conditional probabilities for A'’s measurement outcomes

Position  P(1|r) P(2|r) P(3|r)
Spin—up Z2cos*a 2cos’(a—%) Zcos®(a+3)
: o2 g . 2 _ = :‘3 i 2 .1
Spin —down %sin*a  £sin®(a—-3) $sin®(a+3%)

Lot

Thus the Shannon entropy S for the “success — failure” binary information is as
following(P (r) = } cos® a):

SSh

- Z P (r) {P (success |r ) log P (success |r ) + P ( failure |r ) log P ( failure|r)}

—-(1c05 a)log(3cos c:c)2 (1—-cos a)log(l— 3 cos® o)
ﬁ—sm (u-%- )log(zbm (@+ %)) - (%ﬁ"bln u)log(l—%sinQ(k)

The minimum of the entropy S5 occurs at o = 75 forﬂ <ac< In thus leads
to the successful guessing probability for A:P (success) = 3 {cos @ + sin’ (a e )}

Whena = J5, the first strategy has an optimal value P (success) = 2—‘?@ = 0.622.
Second strategy is guessing |ya)for —% < a < 0. This one has the same optimal
guessing probability as the first strategy ata = —5. The third strategy is to guess
randomly [1)2) or [13) with equal probability for a = 0.

This strategy is not optimal simply because it has a smaller successful probability
of guessing.

The optimal strategies for B player. B receives two cards from the dealer. B knows
that there are six possible combinations for his cards. They are as following:

|4) [ie) |B) = lyaws) [C) = [vathy)
[A) = lath) |B') lYave) |C') = [t1ts)

These six states are not orthogonal states. That means B has no way of distinguishing
them with 100% certainty. However, B does not really need to know exactly what
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e has in hand to infer A's card. For example. B will infer that A's card is |¢3) if
he thinks he has [4) or [4’) in hand. If B has |B) or|B’). then he will infer |¢4) for
A’s card. Similarly. if B has |C) or |C). then he will think that A has the |vq) card
in hand. To make a reasonable guess. B needs to measure his cards before guessing.
There arc two kinds of the measuring methods: (i) Measure them collectively: or (it}
Measure the two cards one by one.

Let us consider both possibilities.

Case (): Combined measurement on B's cards. Since the dimension of the Hilbert
space for B's cards is four, B needs to choose according to quantum mechanics
laws a suitable orthonormal basis {|¢;).i = 1.2,3,4} in the Hilbert space for his
measurement:

4
l6:) = _Jil i}, i =abe.d: J=AB.C.D.

i=1

For example. forj = a, J = A: |¢)) = a1 |41) + a2 |42) + a3 |43) +a|44). where the
base vector |¢) is written in terms of other orthonormal bases {|.4;) }in the Hilbert
space, respectively

|41) = \/?(M) +14%) |A3) = \/g(lﬂ’bﬂ'z) - |¥2, ¥3))

Similarly another representations of|¢;), i = 2,3,4 are described in [26]. The
unknown coefficients a; should be determined by the optimal guessing strategies
and are assumed to be real numbers for simplicity with the following orthonormal

4

conditions: ¥~ a? = 1. Any measurement Al along the |¢;) direction can be related
k=1

to the measurements along other directions,

3
Tr{|6a) (@s| M} = Tr (M) =Y Tr{|ox) ($x| M}.

k=1

With orthonormal measuring basis, B makes the following guessing strategy: (i) Guess
[3), |2} or 1) for A’s card when the measurement outcome is |@1), [¢p2) or |¢3),
respectively; (i) When the outcome is |¢4), B has three choices in general: 1) Guess
one of the three cards for A; for example, guess [¢3) for A: (ui) Guess A's card
randomly from two of the three possible card; for example, randomly guess |3} or
[¢1); (iv) Make a random guess from the three cards.

In general, different guessing choices for the outcome |#4)may lead to different
optimal guessing probabilities. However, numerical study shows [1] that all these three
choices have the same optimal guessing probabilities, which correspond to the same
measuring basis.

Therefore, we can discuss only the third guessing choices. With the guessing
strategy, B knows that the probability for a successful guessing on A's card is Pg
(combined) is following:

1| A18Y (a16) +(Bl0) +(B16.) +(Cl8) +(C|#,)
= 6 3[la +(a10) +(Bl6) +(#16) + (Cla) +(C1o)]

P, (combined)

R T i oad o T3
= '3-+E(ﬂ,' +b,'+c,‘)-|—15(a,' +b +c,’)—516(a4‘ +b; +c})

1
+36(alan o blba =Cc, )
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When a; = by = ¢ = %102 = by = co = 0,a3 = b3 = ¢3 = Oanday =
by = ¢4 = %z,the successful probability Pg (combined) has a maximally value

Pg (combined) = 352 = (.7357.
For the second method (individual measure the two cards on by one), B will
measure his first card correctly with the optimal probability P} = 2—1'@@. The second

card then can be measured correctly with the optimal probability P, = 2—"3@. Thus
B can know his cards exactly with the optimal probability Pjs as following: Pip =
P, - Py = T44/3 = 0,5803.

Remark. However, except for measuring his cards successfully B can also infer
the same card for A by making two consecutive incorrect guesses on his cards. For
example, assume that B does receive|ys ¥2), he still infer the same result |) for

A. For this case, the probability of a successful guess is Pyp = (1 - gisﬁ) d.3=

9%& Therefore, the optimal probability that B will infer the correct card A is
. Pg (separate)is as following:

Py (separate) = Pig + Poy = # = ().6748 > 0.622.

Thus, the best guessing strategy for B to know A's card is doing combined (collective)
measurement on his cards. Therefore, the non-orthogonally forces both A and B to
do measurements on their cards and then make their guesses. The best chance for
A to know her card is P4 = 0.622, a probability, which is nearly doubled than a
random guess 7 = 3. On the other hand, B can choose either to measure his cards by
one or two measure them collectively. Both ways a measuring all give B the optimal
guessing probabilities Pg (separate) = 0.6741 and Pp (combined) = 0.7357 which
are larger than A’s optimal guessing probability. That is, B has a higher winning
probability than A does in the quantum guessing game. Let us consider entanglement-
free quantum algorithms and the role of interference in these processes.

3. Entanglement-free quantum algorithms and strategies without entangle-
ment

There can be exists quantum computational speed-up without entanglement when
we use the mutual computational process as “soft computing optimization — quantum
optimization” for design process of robust KB-FC. We briefly describe the entangle-
ment-free quantum speed-up algorithm and application of simulation results in robust
KB-FC design process.

3.1 The Entanglement-free quantum efficient algorithm

Let us state the following Problem (Mosca, 2000): Given an integer N function
f:x — max+b, where x,m,b € Zy, find m. The classical analysis reveals that
no information about m can be obtained with only one evolution of the functionf.
Conversely, given the unitary operator Uy acting in a reversible way in the Hilbert
space Hy @ Hy such that:

Urlz) ly) = Iz} ly & f (2)), (4)
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(where the sum is to be interpreted as modulus V), there is a QA solving this problem
with only one query to Uy.

Quantum algorithm structure. Let us take N = 2", being n the number of qubits.
The QA efficiently solving the problem previously presented reads as follows:

Step Computational algorithm

Prepare two registers of 71 qubits in the state IO. ..0)'1//,) eH, ®H,,

1 where 1(;/!>=QFT(N)_1“>. and QFT(N)_l denotes the inverse

quantum Fourier transform in a Hilbert space of dimension N

2 Apply OQF T(N ) over the first register

3 Apply U r over the whole quantum state

Apply OFT (N ) ™ over the first register

5 Measure the first register and output the measured value

We now show (according to [27]) how the proposed QA leads to the solution of the
problem. The analysis raises two observations concerning the way both entanglement
and majorization behave in the computational process:

1. In the first step of the algorithin, the quantum state is separable, noting that
the QFT (and its inverse) applied on a well-defined state in the computational basis
leads to a perfectly separable state. Actually, this separability holds also step-by-
step when the decomposition for the QFT is considered, such as the Coppersmith's
decomposition. That is, the quantum state [0...0) [¢) is unentangled.

2. The second step of the algorithm correspouds to a QFT in the first register.
This action leads to a step-by-step minorization of the probability distribution of the
possible outcomes while it does not use neither create any entanglement. Moreover,
natural minorization is at work due to the absence of interference terms.

3. Next, it is easy to verify that the quantum state

G
e} = e o "ETN |
1) m%' 14) (5) .

. . . " fix
is an eigenstate of the operator |y) — |y + f (x)) with eigenvaluc ¢? ™" o,

Remark. After the third step, the quantum state reads

1 e : M=z 621“5% N m
'ﬁz eZHJL_vJ'le): \/N (Z (-32 mi Wi) 'ul]) (6)
=0 z=0

| S —————
First Register
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The probability distribution of possible outcomes has not been modified, thus not
affecting majorization. Furthermore, the pure quantum state of the first register in
Eq.(6) can be written as QFT (N)|m) (up to a phase factor), so this step has not
created any entanglement among the qubits of the system either.

4. In the fourth step of the algorithm, the action of the operator QFT (N) ™ ! over
the first register as interference operation leads to the statee2 ™% ¥ |m) [1);).

5. A subsequent measurement in the computational basis over the first register
provides the desired solution. (Recalling the results from [20], we see that the inverse
QFT naturally majorizes step-by-step the probability distribution attached to the
dilferent outputs).

On the other hand, the separability of the quantum state still holds step-by-step.

Remark. Tt is clear that the QA is more efficient than any of its possible classical
counterparts, as it only needs of a single query to the unitary operator Uy to get
the solution. We can summarize this analysis of majorization for present QA as
_ follows: The entanglement-free efficient QA for finding a hidden affine function shows
a majorization cycle based on the action of QT (N) and QFT (N) ™. Tt follows that
there can exist quantum computational speed-up without the use of entanglement. In
this case, it is seen that no resource increases exponentially. Yet, a majorization cycle
is present in the process, which is rooted in the structure of both the QFT and the
quantum state.

3.2 Classical-quantum strategy without entanglement

Quantum mechanics affects game theory: for certain games a suitable quantum
strategy is able to beat any classical strategy. Let us now discuss the possibility
to design quantum strategies without entanglement using two simple examples of
entanglement-free games: PQ-game [28] and card game [29].

Quantum and classical game strategies: PQ-game example. Let us consider as
example, the penny flipping game (PQ PENNY FLIP game [28]). The game is penny
fipping, where player P places a penny head up in a box, after which player Q, then
player P, and finally player Q again, can choose to flip the coin or not, but without
being able to see it. If the coin ends up being head up, player Q wins, clse player P
wins. The winning (or cheating, depending upon one's perspective) quantum strategy
of Q now consists of putting the penny into superposition of head up and down.
Since player P is allowed to interchange only up and down he is obviously not able
to change that superposition, so that Q wins the game by rotating the penny back to
its initial state.

Physical interpretation of PQ-game. Q produces a penny and asks P to place it
in a small box, head up. Then Q, followed by P, followed by Q, reaches into box,
without looking at the penny, and either flips it over or leaves it as it is. After Q’s
second turn they open the box and Q wins if the penny is head up. Q wins every
time they play, using the following quantum game gate:

) pin) = H - o:.(f2) - H 0
Wffm) . ” T ( 2) \ ; | )
Q strategy  p sirategy @ strategy | rnitial state

and the following quantum strategy [28]:
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Initial state and strategy Player strategy Result of operation

! 1

1) — (10 +19)
P
1 or |
1)+10 0)+il
E— 7 (0+10) Tf(‘ )+{1)
- |0)

Here 0 denotes “head” and 1 denotes “tail”, and o, = ( ? é ) = NOT imple-

ments P’s possible action ol [lipping the penny over. Q's quantum strategy of putting
the penny into the equal superposition of “head” and “tail” on his first turn means
that whether P flips the penny over or not, it remains in an equal superposition
which Q rotates back to “head” by applying Hadamard transformation Hagain since
H=H"' and 71; (1) +|0}) = 71-2, (0) + [1)). After measurement Q received the
state the state|0). The second application of Hadamard transformation plays the role
of constructive interference. So when they open the box, Q always wins without using
of entanglement.

Remark. If Q were restricted to playing classically, i.c., to implementing only o,
or Iz on his turns, an optimal strategy for both players would be to flip the penny
over or not with equal probability on each turn. In this case Q would win only half
time, so he does substantially better by playing quantum mechanically.

Let us consider the interesting case of classical-quantum card game without entan-
glement. In the classical game, one player A can always win with the probability%.
But if the other player B performs quantum strategy, he can increase his winning
probability from % to}. In this case B is allowed to apply quantum strategy and the
original unfair game turns into a fair and zero-sum game, i.e., the unfair classical game
becomes fair in quantum world. In addition, this strategy does not use entanglement,
which is different from most of above described works in [1].

Game (see Table 1 in [1]): Classical-quantum card game with quantum strategy
without entanglement. We will discuss two-player card game [29)].

Classical game model. The classical model of card game is explained as following.
A has three cards. The first card has one circle in its both sides, the second has one
dot in its both sides and the third card has one circle in one side and one dot in the
other. At first step, A put the three cards into black box. The cards are randomly
placed in the box after A shakes it. Both players cannot see what happens in the box.
At second step B take one card from the box without flipping it. Both players can
only see the upper side of the card. A wins one coin if the pattern of the down side is
the same as that of the upper side and lose one coin when the patterns are different. It
is obvious that A has %probability to win and B only has%. B is in a disadvantageous
situation and the game is unfair to him. Any rational player will not play the game
with A because the game is unfair. In order to attract B to play with him, before the -
original second step A allows B to have one chance to operate on the cards. That is
B has one step query on the box. In the classical world, B can only attain one card
information after the query. Because the card is in the box, so what B knows is only
one upper side pattern of the three cards. Except this he knows nothing about the
three cards in the black box. So in the classical field even having this one step query,
B still will be in disadvantageous state and the game is still unfair. Let us consider
the quantized approach to this game.

The quantized card game. When we investigate the game in the quantum field. the
whole thing is changed. We will see that the game turns into a fair zero-sum game and
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both players are in equal situation. Let us consider the case when A use the classical
strategy and B use the quantum strategy. In the first step, A puts the cards in the
box and shakes the box that is she prepares the initial state randomly.

We describe the card state be |0)if the pattern in the upper side is circle and |1)if
it is dot.

So the upper sides of the three cards in the box be described as|r) = |rg) |r1) |r2).
where rg.ri, 72 € {0, 1}, which means |rq).|ri).|r2) are all eigenstates other super-
position of [0} and |1).

Remark. After the Arst siep of the game. A gives the black box to B. Because A
thinks in classical way. in her mind B cannot get information about all upper side
patterns of the threc cards in the box. So A can still win with higher probability. But
what B use is quantum strategy: He replaces the classical one step query with one
step quantum query. The following shows how B query the box.

Algorithm. Let us that B has a quantum machine that applies an unitary operator
Uon its three input qubits and give three output qubits. This machine depends on the
state |r) in the box that A gives B. The explicit expression of [/and its relation with

I (1) (1) ) if re=0
[r) is as following U = Up & Uy @ Us wherely, = i _
Op = 0 =5 )i,f T = 1

( (}3 exp {?m"k} )

The processing of query is shown in Figure 2.
After the process, the output state is

[fin) = (H & H® H)U (H % H & H)|000) = (HUoH) |0) (HU 1 H) 0) (HU2H) |0).

0y — H H
U S
oy— H J H 5
0)— H H
Figure 2: Query processing
Because i 1 g . i 4 .
1+eiﬂ'!'k 1_ e‘t‘il’f‘k
HUW:%( 1 -1 ) ( 0 e ) ( 1 -1 ) =%( IR T )
SO 1 i T
+ e 1— € 0) if re =0
BOH|O = =10+ —5—M) ={ Ili jﬁ = =

From above, it is obvious to see that B can obtain the complete information about the
upper patterns of all the three cards through one query. There are only two possible
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kinds of output states in the black box, which is |0)|0) |1) or|1) 1) |0), that is two
circles and one dot in the upper side or two dots and one circle. Let us assume that
the states of the cards after first step is two circles and one dot, i.e.,|0) |0} [1). After
one step query, B knows the complete information about the upper patterns, but
he has no individual information about which upper pattern corresponding to which
card. Then he takes one card out of the box and to see what pattern is in the upper
side. If B finds out that he is in disadvantage situation, the upper pattern of the card
is dot (|1)), he refuses to play with A in this turn because he knows the down side is
dot definitely. Otherwise if the upper side pattern is circle (|0)), then he knows that
the down side pattern is circle |0) or dot|1). So he continues this turn because he has
the probability 1/2 to win. B will continue the game because he has probability —12- to
win. Hence the game becomes fair and is also zero-sum.

Entanglement-free algorithm game. One of the reason why the quantum strategies
in games are better than classical strategies is that the initial state is maximal
entangled. The quantum strategy in card game applied by B includes no entanglement
and is still better than classical strategy. The initial state input the quantum machine
is |0) |0) |0) which is obviously separable. After the Hadamard transformation, the
state 157155- 10y + 1)) ® (0) + [1)) @ (|0) + [1)). Performed by U, the state becomes
7'53- (10) + €™ |1)) ® (10) + €™ [1)) ® (|0) +€*™™21)). And the states, after the
second Hadamard transformation, are the output state|rg)|ry) |rz). In the whole
procedure, the state is tensor products of the states of the individual qubits, so it
is unentangled. And because the operators (H andl) are also tensor product of the
individual local operators on these qubits, so it is obviously that in this quantum
game there is no entanglement applied.

Remark. Entanglement is important for static games (such as Prisoner’s Dilemma)
but may be not necessary in dynamic games (such as the PQ-game and the card
game). In static games, each player can only control his qubit and his operation
is local. So in classical world, the operation of one player cannot have influence
on others in the operational process. But in quantum field, through entanglement
the strategy changing of one player could influent not only himself but also his
opponents. In dynamic games, players can control all qubits at any step. So just
like quantum algorithms [30], in dynamic games players can use quantum strategies
without entanglement to solve problem, even entangled quantum strategies could be
re-described with other quantum strategies without entanglement.

Thus, if B is given quantum strategy — one step quantum query — against his
classical opponent A, she cannot always win with high probability. Both players
are in equal situation and the game is a fair zero-sum game. The quantum game
includes no entanglement and quantum-over-classical strategy is achieved using only
interference. Quantum strategy could be still powerful without entanglement like in
quantum information and algorithm [31].

3.3 General form of dynamic PQ-game and quantum strategies definition: Interrelaiions
with quantum algorithms

In general case the game can be described as in the following table.

Remark. Since only P and Q play, these are two-player games; they are zero-sum
since when Q wins, P loses, and vice versa. A pure quantum strategy for Q is a
sequencey; € @;. A pure (classical) strategy for P is a sequences; € P;, while a mixed
(classical) strategy for P is a sequence of probability distributionsf; : P; — [0, 1]. If
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both Q and P play pure strategies, the corresponding evolution of the PQ-game is
described by quantum game gate|t'sin) = [ ttks186us [Cin).
ke

Definition Main operations

(1 A Hilbert space H (the possible states of the game) with N =dim H
(if) An initial state ¢/, € H

subset O, < U(N),i€{l,....k+1}- the elements of ), are the moves

(1i1)
Q chooses among on turn I

) Subset P Sy,i€ {1,...,k} . where S, is the permutation group on N
elements - the elements of P are the moves P chooses among on turn I

) A projection operator [1 on H (the subspace WQ fixed by I consists of the

winning states for Q)

Quanturm measurement. After Q's last move the state of the game is measured
withIl. According to the rules of quantum mechanics, the players observe the eigen-
value 1 with probability T'r (u.’»fl'Izjv) : this is the probability that the state is projected
into Wg and Q wins. More generally, if P plays a mixced strategy, the corresponding
cvolution of the PQ-game is described by

Pf = Ukl ( Z fre (8k) skup ... u2 ( Z h (Sl)S:’uipoﬂ{S{) ub. UISL) ks

s EP; 1€EP

wherepg = |g) @ <¢5~- Again, after Q’s last move py is measured withIl; the

probability that p; is projected into Wg ® W, and Q wins isT'r (Ilpy).

Remark. An equilibrium state is a pair of strategies, one for P and one for Q, such
that neither player can improve his probability of winning by changing his strategy
while the other does not. In general, unlike the simple case of PQ-game, Wg =
Wa ({si})ortWg = Wq ({fi}), i.e., the conditions for Q’s win can depend on P’s
strategy. There are with mixed/quantum equilibria at which Q does better than
he would at any mixed/mixed equilibrium; there are some QAs, which outperform
classical ones. Let us now consider the interrelations between QAs and quantum games
structures.

A QA for an oracle problem can be understood as a quantum strategy for a player in
a two-player zero-sum game in which the other player is constrained to play classically.
This correspondence can be formalized and we will give examples of games (and hence
oracle problems) for which the quantum player can do better than that would be
possible classically. In general case entanglement (or some replacement resource) is
required. Surprising observation that efficient quantwn search of a “sophisticated”
database requires no entanglement at any time step: a quantum-over-classical reduc-
tion in the number of queries is achieved using only interference, not entanglement,
within the usual model of quantum computation [31].

Quantum oracle models and reduction of query number. The problem, which forms
the context for discussion is database search — identify a specific record in a large
database. Formally, we label the records {0, 1,..., N — 1}where, for convenience when
we write the numbers in binary, we take N = 2" for n a positive integer. In quantum
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search are considered databases which. when queried about a specific number. respond
only that the guess is correct or not. On a classical reversible computer we can
implement a query by a pair of register(x. b). where x is an n-bit string representing the
guess, and b4s a single bit which the database will use to respond to the query. If the
guess is correct. the database responds by adding 1 (mod2) tob: if it is incorrect. it adds
0 to b. That is. the respouse of the database is the operation:|r) |b) — |x) |b & fo ().
where f, (z) = 1 when r = a. 0 otherwise. Thus if b changes. we know that the guess
is correct. Classically, it takes N — 1 queries to solve this problem with probability 1.

Remark. The following oracles are defined in Table 4 for a gencral fnpction f :
{0,1}™ — {0.1}".

Table 4: Oracles functions

Number Title of oracle Type Definition
2rif (%)
/ The phase oracle P, |x)|6) - cxp{%}lxﬂb)
2 The standard oracle S, | x)|6) — |.t)|b ®f (1))
The minimal (an : .
s erasing) oracle M, |x) |1 (l»

Here i and b are strings of 11 and 7 bits respectively, |z) and |b) the corresponding
computational basis states, and = is addition modulo2™.

The oracles Py and Sy are equivalent in power: each can be constructed by a
quantum circuit containing just one copy of the other. If we take m = nand suppose
we know [ is a permutation on the set {0, 1}" then My is a simple invertible quantum
map associated tof. Intuitively erasing oracles seem at least as strong as standard
ones, though it is not clear how to simulate the latter with the former without also
having access to an oracle that map |z) to|f~! (x)). One-way functions provide a clue:
if f is one-way, then (by assumption) |z) |f (x)) can be computed efficiently. but if
|f (x))could be computed efficiently given |z) then so could |z} given!|f (z)}), and hence
f could be inverted. For some problem, an exponential gap between query complexity
given a standard oracle and query complexity given an erasing oracle [32, 33|.

QAs work by supposing that they will be realized in a quantum system, which
can be in a superposition of “classical” states. These states form a basis for the
Hilbert space whose elements represent states of the quantum system. More generally,
Grover’s QSA (see in details Appendix) works with quantum queries which are linear
combinationsy ¢. s |z, b). where ¢, are complex numbers satisfying} lezs)? = 1.
The operations in QAs are unitary transformations, the quantum mechanical gencrali-
zation of reversible classical operations. Thus the operation of the database that
Grover considered is implemented on superposition of queries by a unitary transfor-
mation, which takes |z,b) to|zr) |b& fa(z)). By using H \/NJ quantum queries, it
identities the answer with probability close to 1: The final vectors for the Npossible
answers a are nearly orthogonal. Let us consider one of the guessing game type that
used Grover's QSA for guessing of any number between 0 and N — 1 and to discuss
the role of different quantum oracle models in the reduction of query number.
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Erample: Guessing of number. Let us suppose in PQ-game the player Q boats that
if P picks any number between 0 andN — 1. inclusive. he can guess it. P knows the
Grover's QSA and realized that forN = 2", the player Q can determine the number
he picks with high probability by playing the following strategy:

0..00) | —— —f;i-ﬂ%’;(l%-li)) = ()

— | TEEC RS0 | | ()
s(£,) ;

w
-

HO"®lyox{ fy pH™" ®1, (ul)

using the following quantum game gate:
G = [H®" 3 Los(fo) o HO" @ b] 05(fa) o [H®" © Ho]

and can be classically efficient simulated using classical computer. Wherea € [0, N - 1]
is P's chosen number, and moves (s1) and (u 2) are repeated a total of k = g\/ﬁ

times, ie., (sx =---=s1) and(ug = -+ =ua). For f : Z} — Z,, the oracle s(f)
is the permutation (and hence unitary transformation) defined by (see Table 3)

f)le.b) = |, b& f(2)). Each P’s moves s; can be thought of as the response
of an oracle, which computes f, () : = d 4 to respond to the quantum query defined
by the state after the action of quantum strategy(i;). After O (\/ﬁ ) such queries,

a measurement by II = |a) (a| ® [ returns a win for Q with probability bounded
abovel, i.e., Grover's QSA determines a with high probability [34].

Remark. If Q were to play classically, he could query P about a specific number at
each time, but on the average it would take & turns to guessa. A classical equilibrium
is for P to choose a random, and for Q to choose a permutation of N = 2™ uniformly
at random and guess numbers in the corresponding order. Even when P plays such a
mixed strategy, Q’s quantum strategy is optimal; together they define mixed quantum
equilibrium.

Knowing all this, P responds that he will be to play, but that Q should only get
one guess, not k = H\/N J Q protests that this is hardly fair, but he will play, as
long as P tells how his guess is to the chosen number. P agrees, and they play. Q is
in every step win.

In this case Q is used slightly improved Berstein-Vazirani algorithm (see in details
Appendix): Guess r and answer a are vectors in Z3, so x - a depends on the cosine of
the angle between these vectors. Thus is seems reasonable to define the oracle *how
close a guess is to the answer” to be the oracle respousef, (z) — g, (z) : = x-a. Then
Q plays as follows:

0..0.0) | —— | wEweglo-m |7 |«

— | el | T | @

oI @) ®7=(10)-11) = | ()
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using the following (more simple) quantum game gate:
G=[H®"®I3]0ga(z)o [H®" @ Hoy] .

For Il = |a) (a| ® I» again, Q wins with probability 1, having queried P only once.

Remark. Oracle, which responds in the Berstein-Vazirani algorithm with z-a (mod
2), is a “sophisticated database” by comparison with Grover’s oracle in QSA, which
only responds that a guess is correct or incorrect. And finally, cntanglement is not
required in Berstein-Vazirani QA for quantum-over-classical improvement. It is remar-
kably the slightly improved version of the Berstein-Vazirani algorithm does not create
entanglement at any time step, but still solves this oracle problem with fewer queries
than is possible classically [31, 35].

Let us consider the application of entanglement-free quantum control algorithm
for robust KB design of FC.

4. Quantum computing for design of robust wise control

Decomposition of optimization process in design of robust KB in intelligent control
system are separated in two steps: (1) global optimization based on QGSA; and (2)
learning process based on QNN for robust approximation of teaching signal from
QGSA.

Figure 3 shows the main tools and interrelations between Soft, Quantum and
Quantum Soft Computing for simulation, global optimization, quantum learning and
the optimal design of robust KB in intelligent control systems.

The main problem of KB-optimization based on soft computing is consistent in the
following: the design process can use only one solution space for global optimization.
As an example, let us consider a design of KB for fixed class of stochastic excitations
on control object. If the design process bases on many solution spaces with different
statistical characteristics of stochastic excitations on control object then GA cannot
find global solution for optimal KB. In this case for global optimization of KB QGSA
is used. New optimization methods of intelligent control system structures (based on
quantum soft computing) are required also a modification of simulation methods for
quantum computing.

There can introduce a quantum computational speed-up without the use of entang-
lement. In this case, it is seen that no resource increases exponentially. Let us now
consider briefly the structure of quantum control algorithm for design of robust KB-
FC in intelligent control system.

We will study the problem of design the intelligent robust control from different
KB that are received with soft computing technology but that are non-robust with the
different changing of conditions in initial states of control object, external stochastic
excitations, reference signals ctc.

We can see from concrete example below that it is possible to design robust
intelligent KB using superposition of non-robust KBs. In this case the quality of
control based on a new KB is more effective than particular KBs. We say that in this
case wise robust control is introduced. According to the definition of wise control it
means: “wise = intelligent @ smart”. This situation is similar to Parrondo Paradox
in quantum game. For design process of wise control in this case the entanglement is
not used and it is different from Parrondo Paradox.
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Shell of Quantum Soft Computing

[ Genetic Aigortthms | (" [ Quantum Search Algorittms |

Quantum Chaetic Cellular

[ Fuzzy Neural Networks | s

J Neural Networks
: I
Fuzzy Systems based on <:_:-t-_-> Fuzzy Systems based on
Fuzzy Logic ] Quantum Logic
1
1

| S ﬁ
D [ vy o]

Figure 3: General structure of Quantum Soft Computing tools

Example: Entangled-free quantum control algorithm for design of robust wise KB-
FC. Let us consider one of the examples of quantum computing approach to design
robust wise quantum coutrol. Figure 4a show the structure of intelligent control
system based on fuzzy PD-controller (PD-FC). With Soft Cowputing optimizer we
can design partial KB(z) for PD-FC from fuzzy simulation of control object behavior
using different class of stochastic excitations. For many cases these KB(z) are not
robust if we usc another types of stochastic excitations on control object, changing
initial states, or changing the type of reference signals.

The problem consists in design of unified robust KB-FC from any finite number
KB(7) look-up tables created by Soft Computing Optimizer simulation of intelligent
fuzzy control under fixed type stochastic excitations. Let us consider one of possible
solution of this problem based on quantum cowmputational algorithm. According to
soft computing design technology of KB for FC we consider the ordered (structured)
DB as control laws of coefficient gains in traditional controller as PID-controller.
Superposition operator is used for design of relations between coefficient gains of
PD-FC (see, Figure 4b).

SC & QC with

Controller Nwmﬂ,',wa
Ki+Ky N

Figure Ja: Intelligent nonlinear control systemn

Grover's QSA is used for searching of solutions and max operation between deco-
ding states is analogy of measurement process of solution search.
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Figure 4b: Superposilion of coefficient gains

Step Computational algorithm

Prepare two registers of N qubits in the state |0. : .0) eH,.

2 | Apply H over the first register

Apply diffusion (interference) operator G over the whole quantum state

Apply max operation over the first register

| &l W

Measure the first register and output the measured value

Figure 5 shows the structure of design process. As superposition operator we use
the particular case of QFT - the Walsh-Hadamard transform.

\ ® 2 Q-bits + 1 Q-bit
|U)z H i(,m +1l\' ) parameters measurement
JE (] 12 %——)

Superposition
HW Accelerator

= %(.0103}4,]0,12},+;1,01>+|1,12}) Prepatetype
Reai Possibilities
L—— Decoding 'Solu’tion
K, K,:t=t

Figure 5: Structure of design process
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KB(i) of PD-FC includes the set of coefficient gains k' = {kp (f).kp (t)}Haws
received from soft computing simulation using different tvpes of random excitations
on control object. Figure 6 show the structure of quantuimn control algorithm for design
of a robust unified KB-FC from two KB-FC created by soft computing optimizer for
Gaussian (KB(1)) and nou-Gaussian (with Rayleigh probability density function) -
KB(2) noiscs.

B3 Sevi el
0 o 08, 04, 19; 1. V
: H |"'?'= N o A
Sudf—e |l €
[, 3l ™o
iy P
abt L . i
—-—* Grover's Gperalor (n-ilerations):
'O M. oy Mﬂon
oding |~
Doc ng AP.R

P zguﬁ: G: Robust KB design with quantum algorithm

Remark. From normalized real simnlated coefficient gains {Kp (¢). Kp (t) }can be
calculated the values of virtual coefficient gains {A‘g (t) .A'g (f}} as logical negation:

{kg (t) .kg (t)} =1-{kp(t).kp(t)}. For example, if the value of the proportional

coefficient gain.kp (t;), is kp (t;) = 0,2, then k% (t;) =1 - 0,2 = 0.8.

Figure 5 shows the geometrical interpretation of this computational process.

Figure 5 show the logical description of superposition between real and virtual
values of coefficient gains created by soft computing simulation. For this case four
classical states are joint in one non-classical superposition state with amplitude proba-
bility}. For above described example we have the following coding result:|0;) —
0.2, [1;) — 0.8.

Let us consider the computational steps of quantum control algorithm (see, Figure
6):

1 Step | in quantum algorithm is the coding of current values (for fixed time I‘.) of coefficient gains

real values
According to the second step of algorithm Hadamard matrices are created superposition between
real simulated and virtwal elassical states.

Virtual classical state is calculated from normalized scale [0 and according to complementary

7 | quantum law is logical negation of real simulated value.

Remark. Hadamard transform joint two classical states in one non-classical state as

su ition. | that it is impossible in classi ]
perpos 7:[|0.)+|l.)]'-' 71_; [|Yes)+|No)] ossible in classical mechanics. This

operation created the possibility for extraction of hidden quantum information from classical
contradiciory states.

3 | In third step Grover's diffusion operator as interference operation search the solution

Max operation in step 4 is applied to classical states in superposition after decoding of results

5 | Step 3 give the final results of quantum computation of new control laws of coefficient gains from
two KBYi), i=1,2 created from soft computing technology

N
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Figure Ta shows the initial control laws of coefficient gains in PD-FC created from
soft computing technology for essentially non-linear control object as van der Pol
oscillator

i+ (2 —1)d+x=kp(t)e+kp(t) é+E() (7)

under Gaussian random white noise & (1).

Figure 7b shows the initial control laws of coefficient gains {kp (t),kp () }in PD-
FC created from soft computing technology for similar essentially non-linear control
object as Van der Pol oscillator under non-Gaussian random noise with Rayleigh
probability distribution. Figure 7c shows the computational results of new coefficient
gains of PD-FC based on the quantum control algorithm for similar essentially non-
linear control object as Van der Pol oscillator using KB's created from soft computing
technology. Figure 7d shows the results of simulation the dynamic behavior of Van
der Pol oscillator using PD-FC with different KB.

The comparison of simulation results represented in Figure 7d shows the more
robustness degree of quantum PD-FC than in similar classical soft computing cases
as a new effect in intelligent control system design: From two non-robust KB of PD-
FC’s one robust KB of PD-FC with quantum computation approach can be design.
This effect is similar to the effect in above mentioned quantum Parrondo Paradoz in
corresponding game but without using of entanglement.

1, 10
> 5 " §
% m F & % o ] ] ri] @
Fc, L
& .
b
(b) 25 o8
0 — o
o R 3 W H_. % &
Foy #c,
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(€ 8 o
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(d)

P
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Figure 7: (a) Coefficient gains of Q-PD controller; (b) Coefficient gains scheduled by
FC trained for Gaussian excitation; (c) Coefficient gains scheduled by FC trained for
non-Gaussian ezcitation (d) Control object dynamics
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5. Conclusions

We have developed new methods of quantum control process simulation with appli-
cations to Al, applied informatics and computer science. The QAG’s design method
on the examples as Grover's QSA and quantum games are illustrated. New effects of
wise control design from non-robust KBs are described. The developed analysis and
synthesis of QAG’s dynamic are the background for silicon circuit gate design and
simulation of robust knowledge base (KB) for intelligent fuzzy controllers (FC).
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Appendix. Grover’s quantum search algorithm: Information analysis of
quantum gate dynamics.

Quantum algorithms come in two main varieties: the ones that rely on a Fourier
transform, and the ones that rely on amplitude amplification. Typically the algorithms
consist of a sequence of trials. After each trial a measurement of the system produces a
desired state with some probability determined by the amplitudes of the superposition
created by the trial. Trials continue until the measurement gives a solution, so that
the number of trials and hence the running time are random variable. Let us consider
the same problems for concrete Grover’s QSA based on amplitude amplification.

A.1. Dynamics of Grover’s QSA gate. Grover’s algorithm starts by preparing all
m qubits of the quantum computer in the statejs) = [0...0}. An clementary rotation
in the direction of the sought state |xg) with property f (zo) = 1 is achieved by the
gate sequence:

Q= | (LEY) .1y | - HO™, (A1)
| N —
k times
where the phase inversion I, with respect to the initial state |s) is defined by
Is|s) = —|s), Is|s} = |s) (z # s). The controlled phase inversion I, with respect

to the sought state |zp) is defined in an analogous way. Because the state |zq)
is not known explicitly but only implicitly through the propertyf (zg) = 1, this
transformation has to be performed with the help of the quantum oracle. This task
can be achieved by preparing the ancillary of the quantum oracle in the state |ag) =
% (|0) — |1)) as the unitary and Hermitian transformationUp : |z,a) — |z, f (z) @ a).
Thereby|z) is an arbitrary element of the computational basis and |a) is the state of
an additional ancillary qubit. As a consequence one obtains the required properties
for the phase inversionl, ,, namely [4]:

|z, f (z) ®ao) = |z,0®a0) = %l%rvo)*lw-l)hlx-an). Jorx # xo
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|z, f(z) B ag) = |z, 1B ag) = ) = jz,0)] = = lz,a9), forz=ux¢

1 .
7 [z, 1
In order to rotate the initial state |s) into the state |zp) one has to perform a
sequence of n such rotations and a final Hadamard transformation at the end, i.e.,
[8gin) = HQ™ |Sin). The optimal number n of repetitions of the gate Q in Eq. (A.1)
is approximately given by

n= % - % =~ ;—’\/—iﬁ, (2™ >1). (A.2)

4arcsin( 2™
The Grover’s algorithm is optimal [4 - 6].
A.2. Quantum operators of QSA. The distinctive element of this algorithm isD,,,
which is called diffusion matriz [35] of order nand it is responsible of interference in
this algorithm.

Table Al: Diffusion matriz definition

D. o> .1 ..] [ | ..[] o[ 11>
0.0> | a+12~] 12+ | | 12 | .| 12% | 12
0.1> | 12+ | 112~ .| 1= | .| 12= | 12
> 21 | 12 | | a2 | 12 | 12
.0 | 121 | 12 | .| 12 | .| d+12™| 12=]
.15 | 12e | 1@ | .| 1= | .| 12~ | -1+

It plays the same role as QFT,, (Quantum Fourier Transform) in Shor’s algorithm
and of "H in Deutsch-Jozsa's and Simon’s algorithms.

This matrix is (liggiggczij?s

[Dn) 3 ty’i’r‘f/_z_“v (A.3)

where1 =0,...,2" - 1,7 =0,....2" — 1 n is a number of inputs.

The gate equation of Grover's QSA circuit is the following:

G Grover =I(Dn ® I) - U.F‘l h | (n-HH) (A4)

Ezample. The diagonal matrix elements in Grover’s QSA-operators (as example
Eq. (A.5)) are connected a database state to itsell and the off-diagonal matrix elements
are connected a database state to its necighbours in the database. The diagonal
elements of the diffusion matrix have the opposite sign from the off-diagonal elements.
The magnitudes of the off-diagonal elements are roughly equal, so we can write the
action of the matrix on the initial state, as example:

—a b b b b b 1 —a+(N-3)b
b —a b b b b 1 —a+(N-3)b
b b —a b b b 3 | +a+(N=-1)b L (AS)
b b b —a b b 1 VR T | —a+(N=-3)b | VN '\
b b b b —a b 1 —a+(N-3)b
b b b b b —a ] —a+(N - 3)b

where a = 1—b, b = 5. If one of the states is marked, i.e. has its phase reserved with
respect to those of the others, the multimode interference conditions are appropriate
the constructive interference to the marked state, and destructive interference to the
others. That is, the population in the marked bit is amplified. The form of this matrix
is identical to that obtained through the inversion about the average procedure in
Grover’s QSA. This operator produce a contrast in the probability density of the final
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states of the database of & [a + (N — 1)b}* for marked bit versus wle—(N-3) b)?
for the unmarked bits; N is the number of bits in the data register. Grover algorithm
gate in Eq. (A.1) is optimal and it is very efficient search algorithm. And Grover-based
software is currently used for search routines in large database [2 - 7|.

A.3. Information analysis and optimization of QSA-termination problem. Grover’s
QSA consists of a number of trials repeated until a solution is found. Each trial has
a predetermined number of iterations, which determines the probability of finding
a solution. It is therefore necessary to carefully choose their number to optimize
the running time. These problems arc studied in [11, 34]. A quantitative measure of
success in the database search problem is the reduction of the information entropy of
the system following the search algorithm [14]. Entropy S" (P;) in this example of a
single marked state is defined as

N
$Sh(P) = - Y. P.log P.. (A6)
i=1

where F; is the probability that the marked bit resides in orbital i. In general,
according to [9], the von Neumann entropy is not a good measure for the usefulness
of Grover's algorithm. For practically every value of entropy, there exit states are
good initializers and states that are not. For example.S (p(n.1)-miz) = loga N —1 =

s (p( ﬁ;v)_pure), but when initialized in p(,_1)—miz, the Grover algorithm is as

bad as guessing the market state. Another example may be given using pure states
H |0} {0| H andH [1) (1] H. With the first, Grover arrives to the marked state quadratic
specd-up, while the second is practically unchanged by the algorithm. We used the
Shannon information entropy for optimization of the termination problem of Grover’s
QSA [14]. Information analysis of Grover’s QSA based on using of Eq. (A.6), gives
a lower bound on necessary amount of entanglement for searching of success result
and of computational time: any QSA that uses the quantum oracle calls {O} as

I —2|s) (s| must call the oracle at least 1' > (%“ + 1_7_101?\") VN times to achieve a
probability of errorP. [36].

Meration h

Figure Al: Shannon entropy analysis of Grover’s QSA dynamics with seven inputs

The information system consists of the N-state data register. Physically, when the
data register is loaded, the information is encoded as the phase of each orbital. The
orbital amplitudes carry no information. While state-selective measurement gives as
result only amplitudes, the information is completely hidden from view, and therefore
the entropy of the system is maximum:S3t, (P;) = —log (1/N) = log N. The rules of
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quantum measurement ensure that only one state will be detected ecach time. If the
algorithm works perfectly, the marked state orbital is revealed with unit efficiently,
and the entropy drops to zero.

Otherwise, unmarked orbital may occasionally be detected by mistake. The entro-
py reduction can be calculated from the probability distribution, using Eq. (A.6).
Figure Al show the result of entropy calculation for the simulation quantum search
of one marked state in the case N = 7. The minimum Shannon entropy criteria is
used for successful termination of Grover's QSA and realized in this case in digital
circuit implementation. Experimental success results of Grover's QSA simulation with
information condition of QSA-termination are demonstrated in [12, 14].



