Tom 3, Ne 3, CeHTabpb 2008 ISSN 1819-4362

HEYETKUE CUCTEMDI
N MATKMe BblYNCNeHNA

Hayunbiih :)KypHan Poccuiickoil accoumayun
HEYeTKNX CUCTEM N MArKNX BbIMUCEHUIA



YK 658.012.011.56

FAST ALGORITHM AND HW DESIGN FOR EFFECIENT
INTELLIGENT COMPUTATION OF MAIN QUANTUM
ALGORITHM OPERATORS ON CLASSICAL COMPUTER

Ulyanov LS., Porto M., Ulyanov S.V.
International University of Nature, Society, and Man “Dubna”, Moscow, Russia
ST Microelectronics, Milan, Italy

ITocmynuaa 6 pedaxyuro 15.05.2008.

[peacrapasiercs obumit NOAXOL K MOACIAHPOBAHHIO KBAHTOBBIX BbIYHC/IE-
Huil HA KiaaccudeckoMm komusiorepe. [Ipemsaraercs OblcTpbiil ajaropuT™
JUISE CUMYJISILIME KBAHTOBOrO ajropurma ['posepa Ha 60/b11I0H HEOTCOPTH-
posanHoii 6ase panHbix. leMoHCTpMpyeTcs cpaBHEHHE CO CTAHIAPTHBIM
c110co00M CHMYJIAILIMH KBAHTOBBIX BblyucieHni. OuucbiBactcs 1M3aiiH am-
[AapATHOrO ODeCleYeH st 15 PEAIM3alMY OCHOBHBIX KBAHTOBbIX OlIEPATO-
pos. B kauectse Tecta acppexTHBHOCTH AH3AMHA IPEIJIAIACTCS AJIrOPHTM
Iposepa. [emoncrpupyercss BOIMOXKHOCTE 3(DEKTUBHOIO MOIEINPOBaA-
HUS KBAHTOBBIX BbIYHCJICHMIA.

The general approach for quantum algorithm (QA) simulation on classical
computer is introduced. Efficient fast algorithm and corresponding SW for
simulation of Grover’s quantum search algorithm (QSA) in large unsorted
database and fuzzy simulation is presented. Comparison with common
QA simulation approach is demonstrated. Hardware (HW) design method
of main quantum operators that are used in simulation of QA and fuzzy
operators is described. Grover’s QSA as Benchmark of HW design method
application is presented. This approach demonstrates the possibility of
classical efficient simulation of quantum algorithm gates (QAG) and in
general fuzzy simulation approaches.

Kuawudesble cjloBa: KBaHTOBbil aaroputy, addekrussoe Mo,ueuupoaa-
HHe, BbICTPBLA AIrOPUTM, AIIIAPATHAS DEAJIH3ALMS.

Keywords: quantum algorithm gate, efficient simulation, fast algorithm,
hardware implementation.

1. Introduction

Quantum algorithms (QA) demonstrate great efliciency in many practical tasks
such as factorization of large integer numbers, where classical algorithms are failing
or dramatically ineffective [1]. Practical application is still away due to lack of the
physical HW implementation of quantum computers. We describe design method
of main quantum operators and hardware implementation of QAG for fast search in
large database and related topics concerning the control of a process, including search-
of-minima intelligent operations. This method is very useful for minimum efforts of
searching among a set of values and in particular is the first step for the realization
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of a HW control systems exploiting artificial intelligence in order to fuzzy control in
a robust way a non-linear process or in order to efficient search in a database. The
presented HW performs all the functional steps of a Grover QSA (This algorithm and
its modifications are described in [2] and briefly in Appendix). By suitable changes of
traditional matricial approach, a modular n-qubit-hybrid structure is realized in order
to prove the usefulness of iterations of the gate, which provide a higher probability of
exact solution finding. A minimum-entropy based method is adopted as a termination
condition criterion and realized in a digital part together with display output.

The possibility of providing an external clock signal for iteration management
allows to implement a very fast Grover’s QSA, many times (for comparison in details
see Table 2 below) faster than the corresponding software (SW) realization [3], and
less sensitive to qubits improvement. The difference between classical and QAs is
following: problem solved by QA is coded in the structure of the quantum operators.
Input to QA in this case is always the same. Output of QA says which problem was
coded. In some sense you give a function to QA to analyze and QA returus its property
as an answer.

Formally, the problems solved by QAs could be stated as follows:

Input A function f: {0,1}* — {0,1} ™
Problem | Find a certain property of f

QA studies qualitative properties of the functions.

The core of any QA is a set of unitary quantum operators or quantum gates. In
practical representation quantum gate is a unitary matrix with particular structure.
The size of this matrix grows exponentially with the number of inputs, making it
impossible to simulate QA’s with more than 30-35 inputs |3] on classical computer
with von Neumann architecture. In this report we present a practical approach to
simulate most of known QA’s on classical computers. We present the results of the
classical efficient simulation of the Grover’s QSA as a Benchmark of this approach and
background for quantum soft computing and fuzzy control based on quantum genetic
(evolutionary) algorithms and quantum neural network. The role of this approach in
quantum soft computing and in fuzzy simulation is discussed in [4 - 9].

2. Structure of QA gate system design

The background of QA simulation is a generalized representation of QA as a set
of sequentially applied smaller quantum gates as it is presented on the Figure la.
From the structural point of view each QA requires a particular set of quantum
gates, but generally each particular set can be divided into three main subsets with
same function for all QA’s: Superposition operators, Entanglement operators and
Interference operators. This division permits to generalize the approach of QA simu-
lation and to create a classical tool to simulate any type of known QA. Furthermore,
local optimization of QA components according to specific hardware realization makes
it possible to develop appropriate hardware accelerator of QA simulation using clas-
sical gates [4, 5].



FAST ALGORITHM AND HW DESIGN FOR EFFECIENT INTELLIGENT... 59

2.1. Generalized approach i QA sunulation

In gencral. any QA can be represented as a civeuit of smaller quantum gates as it
is demonstrated on the Figure 1 |4]. The circuit presented in the Figure 1 is divided
into five general steps:

Step 1: Input. Quantum state vector is set up to an initial value for this concrete
algorithm.

For example, input for Grover's QSA is a quautum state|og)described as a super-
position of the quantum states as
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Figure 1h: Quantum circuit of Grover’s QSA
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Such a quantum state can be presented as it is shown on the Figure 2a. The
coefficients a; are called probability amplitudes |2, 4]. Probability amplitudes may take
negative or even complex values. The only constrain on the values of the probability
amplitudes is
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Figure 2: Dynamics of Grover’s QSA probability amplitudes of state vector on each
algorithm step

Y ai=1 (2)

Step 2: Superposition. The state of the quantum state vector is transformed in the
way that probabilities are distributed uniformly among all basis states. The result of
the superposition step of Grover’s QSA is presented on the Figure 2b in probability
amplitude representation and in the Figure 3b in probability representation.

Step 3: Entanglement. Probability amplitudes of the basis vector corresponding to
the current problem are flipped while rest basis vectors left unchanged. Entanglement
is done via controlled-NOT-operation. Result of entanglement operation application
to the state vector after superposition operation is shown on the Figure 2c and in
the Figure 3c. Note that, an entanglement operation does not affect the probability of
state vector to be measured. Actually entanglement prepares a state, which cannot be
represented as a tensor product of simpler state vectors. For example, consider state
¢1presented on the Figure 2b and state ¢, presented on the Figure 2c:

¢ = 0.35355(/000) — |001) + [010) — |011) + |100) — |101) + [110) — [111))
= 0.35355 (|00) + [01) + [10) + [11)) (|0) — [1))
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¢s = 0.35355(|000) — |001) — [010) + [011) + [100) — [101) + [110) — |111))
=0.35355 (|00) — [01) + |10) + [11)) 0) -0.35355 (|00) + (01) + |10) + |11)) |1)

As it was shown above. described state ©; can be presented as tensor product of
simpler states, while state @» cannot.

Step 4: Interference. Probability amplitudes are inverted about the average value.
As a result the probahility amplitude of states “marked” by entanglement operation
will increase. Result of interference operator application is presented on the Figure
2d in a probability amplitude representation and in the Figure 3d in a probability
representation.

Step 5: Output On this step performed measurement operation (extraction of
the state with maximum probability), and following interpretation of the result. For
example, in case of Grover's QSA required index is coded in first n bits of the measured
basis vector.,

Steps of QA’s realized by unitary quantum operators. Simulation of quantum
operators is a key point in general QA simulation. In order to accelerate QA's basic
quantum operators must be studied.
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Figure 3: Dynamics of Grover’s QSA probabilities of state vector on each algorithm
step

2.2. Main QA operators

We consider superposition, entanglement and interference operators from simula-
tion viewpoint. In this case superposition and interference have more complicated
structure and differ [rom algorithm to algorithm. And then we consider entanglement
operators, since they have similar structure for all QA’s, and differ only by [unction
being analyzed.
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2.2.1. Superposition operators ¢f QA's
In general, the superposition operaior cousists of the combination of the tensor
products Hadamard Hoperators with identity operator]:

1 [1 1 10
a IHE T

The supes osition operator of most QA’s can be expressed as (see, Figure 1aj

Sp = (52 H) .\)(5 S‘) (3)
j=1 i=1

where n and m arc tt yumbers of inputs and of outputs respectively. Operator. 5
may be or Hadamard ol.eator H or identity operator I depending on the algorithm.
Numbers of outputs mas -] as structures of corresponding superposition and interfe-
rence operators are present{ in the Table 1 for different QA’s.

Table 1: Parameters of supengsition and interference operators of main quantum
algorithms

Algorithm Supenosition | M | Interference

Deutsch’s Her 1 HROH
Deutsch-
Jozsa's H®K : "H®I
Grover's "HQH 1 D ®I
Simon’s "H ®"I n JIH® nI
SITO"'S "H®"IA n QFT;'®"]

Note that superposition and interference operators are often contain tensor power
of Hadamard operator which is called Walsh-Hadamard operator. It is known [2.4]
that elements of the Walsh-Hadamard operator could be obtained as:

e f
-1) 1 1, if i+ 7 is even
ng - ( __ 1 ) 7
[ }1-1 on/2 an/2 { -1, if i = j is odd )

where 1 =0.1,...,2",7 =0,1,...,2".
This approach improves gieatly performance of classical simulation of the Walsh~-

Hadamard operators, since its elewsents could be obtained by the simple replication
according to the rule presented in Eq. (4).

Ezample 1: Consider superposition operaver of Deutsch’s algorithm, n = 1. m =
1, S=I

Deutsch _ (1) 1 (=1)90 (=1)01] VT
{Sp]i,j = 9172 @l = %( (_1)1-01 [_l)lvl[ ) = ﬁ[ I = ] (5)
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Ezample 2: Consider superposition operator of Deutsch-Jozsa’s and of Grover's algo-

rithm, for thecasen =2, m=1, §=H:

(_I)UOOH (_1)0-1H (_I)B-ZH (_1)D-3H
D.-J's, Grover's _ (—1)'] 1 (”I)I.OH (_1}1.1H (_1)1'2H (_1)1.3H
[Sp}i.j - L_25)n_ ®H = 2 (_1)200H (_1)2-1H (_1)2-2H (_1)2-3H
(—1)3'0.'1 (_1)3-111- (_1)3¢2H (71)3-3’(1

H H H H

.| H -H H -H

"2\ H H H H

H -H H -H

(6)

Ezample 3: Superposition operator of Simon’s and of Shor’s algorithms, n =

2m=258=1I

-0¥0dn  -0%ian  0%2¢n 093N

Simon, Shor _ it o (=11*02yy  (—1)¥*1@3yy  (—n)1*3@p) (-1i=33

18Pl - eli= (-03021 (1225 (-1223n (-3
(_”3-0(3” !_UJCE(‘A‘” ('1)3.2(2’) (- “3-3(2” @

3y 2 2 2
_ [31 2y 2, 2 }
Iy 2 3 Uy
2, _2; 2; _3g
2.2.2. Interference operators of main QA’s
Interference operators must be selected for each algorithm individually according
to the parameters presented in the Table 1. Consider some particular parts of interfe-
rence operators. Interference operator consists of interference part, which is different
for all algorithms, and from measurement part, which is the same for most of algo-
rithms and consists of m tensor power of identity operator. Consider interference
operator of each algorithm.
Erample 1: Interference operator of Deutsch’ algorithm. Interference operator of
Deutsch’s algorithm consists of tensor product of two Hadamard transformations, and
can be calculated using Eq. (4) withn = 2:

[[’ﬂt Deutsch) 2 — ( l) i . 1

14455 5

T2 T2 1 #)

[ —y
.
—

T g Wy

Note that in Deutsch’s algorithm, Walsh-Hadamard transformation in interference
operator is used also for the measurement. basis.

Ezample 2: Interference operator of Deutsch-Jozsa's algorithm. Interference opera-
tor of Deutsch-Jozsa’s algorithm consists of tensor product of n power of Walsh-
Hadamard operator with an identity operator. In general form the block matrix of
the interference operator of Deutsch-Jozsa's algorithm can be written as:

_n@

Int Deut.cch—Jozsa's} L I (9)
14 ,j 22 2
where i = 0,...,2" —1,j=0,...,2" — 1.
Ezample 3: Interference operator of Deutsch-Jozsa’s algorithm,n = 3,ky = 2,k =
I;
o I 1 1 I
Deutsch—Jozsa's e _ _}; I -1 1 -1
[In: ]';-,j ==®l=3 1 T 11 (10)
I =I I -I
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Ezxzample 4: Interference operator of Grover’s algorithm. Interference operator of
Grover’s algorithm can be written as a block matrix of the following form:

[Int('r'rot.'er] ,'J':Uﬂ@l:( —"])@]:

onj2

1 1 | ~1i=j
(“”27/2:)@",-:3-'(m)m‘#;im{ Li#i ° (1

wherei =10,...,2" — 1,7 =0,....2" — 1, D,, refers to diffusion operator:

(_I)IAND(izj)

(D] o 9n/2

Erxample 5: Interference operator of Grover's QSA, n =2,m = 1:

[[ntc"‘"’“’"]‘j=D281=(~—21-’,-E~21)®I=(—1+1)®I .(-1-)@1
- 2 2 i W2 -
(-1+3)1 31 %1 %1 -1 I I I
_ %1 (-1+3)1 3d ?I RS A A B |
- o %1 (-1+3)1 31 N A A B |
51 31 31 (-1+35)1 I 1 1 -1
(12)

Note that with bigger number of qubits, gain coefficient will become smaller.
Dimension of the matrix increases according to 2", but each element can be extracted
using Eq. (11), without allocation of entire operator matrix.

Remark. SinceD, D}, = I, D, is unitary and is therefore a possible quantum
state transformation. While the matrix D), is clearly unitary it can to have the
decomposition formD, = —H, R} H,, whereR} [i,5] = 0, ifi # j, RI[1,1] = -1
andR} [i,i] = +1,if 1 <i < N.

In concrete form the operator D, (diffuston — inversion about average) in Grover
algorithm is decomposed as

10 0 0\*
B e o 1 1 \® 0 1 0 0 1 1 \o»
BT e 1 -1 0O 0 .0 1 -1

0 0 0 1

and can be accomplished with O(n) = O(log(N))quantum gates |2,4]. It means that
from the viewpoint of efficient computation the form as in Eq. (11) is more preferable.

Ezxample 6: Interference operator of Simen’s algorithm. Interference operator of
Simon's algorithm is prepared in the same manner as superposition as well as superpo-
sition operators of Shor’s algorithms and can be described as following Eq. (3) and

Eq. (7)

(_l)i“j » M
on/2 ® "l =

[ Simon] < g™ 1 =
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(_I)G-O'mi o (_I}D-j_mI (al)oo(‘l"--l)_mI
e I e S o L e O i i S ¢
(__l)('.’“_.l}-o_ml : (_I)@“_.l)-j.ml ‘:‘ (_1)l2"—1);{2"—1)_m1

Remark. In general, interference operator of Simon’s algorithm coincides with
interference operator of Deutsch-Jozsa's algorithm Eq. (9), but each block of the
operator matrix Eq. (13) consists of m tensor products of identity operator.

Remark. Each odd block (when product of the indexes is an odd number) of
the Simon’s interference operator Eq. (13), has a negative sign. Actually if ¢ =
0,2,4,...2" =2 or j = 0,2,4,...2" — 2 the block sign is positive, else block sign
is negative. This rule is applicable also for Eq. (9) of Deutsch-Jozsa’s algorithm
interference operator. Then it is convenient to check if one of the indexes is an even
number instead of calculating their product. Then Eq. (13) can be reduced as:

simon]  _npgemy_ D 1 [ ™Iifiisodd orif j is odd
[t ]i'j il s 2n/2 ®"I = on/2 | —™] if { is even and j is even
(14)

Ezample 7: Interference operator of Shor’s algorithm. Interference operator of Shor’s
algorithm uses Quantum Fourier Transformation (QFT) operator, calculated as:
i . sende
(QFT.);,; = 5ame T % (15)

where: J - imaginary unit, i =0,...,2" — 1 and, j =0,...,2" — 1. With n = 1 we can
observe the following relation:

1 [ ed=(0=0)2m/2' Ja(0s1)2m/2" 1 11
QFTkxik,: 1= '2_%" ( eJu(lvU]Zw/21 e Jx(1=1)2m/21 = ﬁ ( 1 -1 ) =H
Eq. (16) can be also presented in harmonic form using Euler formula:

[QFT,]; ;= E'El,—/i" (cos ((z‘ *j)—;kll) + Jsin ((z’ *j);%))
2.2.3. Entanglement operators of main QA’s
In general entanglement operators are part of QA where the information about the
function being analyzed is coded as input-output relation. Let's discuss the general
approach for coding binary functions into corresponding entanglement gates. Consider
arbitrary binary function: f : {0,1}" — {0,1}™, such that f(zo,...,Zn-1) = (Yo, .-,
Ym-1). In order to create unitary quantum operator, which performs the same trans-

formation, first we transfer irreversible function f into reversible function #, as follo-
wing: F : {0,1}™"" — {0,1}™"", such that

F(zo,.sTn-1,Y0: - Ym-1) = (T 0, sy Bn=1; J{T 0wy Tr=1) D (I}o. w3 Ym=1))

where & denotes addition modulo 2. Having reversible function F' we can design an
entanglement operator matrix using the following rule:

[Vrl;s, ;5 =118FG?)=i? ije ]0,.,0;1.,1;| B denotes binary coding
n+m n+m
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Actually resulted entanglement operator is a block diagonal matrix, of the form:

My 0
Up = .
U A12n_1

Each block M;,7 =0, ...,2" — 1 consists of m tensor products of I or of ' operators,
and can be obtained as following:

M; =

=] { 1,iff F(i,k) =0 (17)

k=0 | C.iff F(i,k)=1 "
01
1 0
ment operator is a sparse matrix. Using sparse matrix operations it is possible to
accelerate the simulation of entanglement operation.

Ezamplel. Entanglement operator for binary function: f : {0.1}* — {0,1}" such
that:f(x) = 1| ,_¢; 0| , .0, Reversible function F in this case will be: F : {0, 1}»3 —

{0, 1}3, such that:

where (' stays for NOT operator. defined as:C’ = ( ) It is clear that entangle-

(x,y) (= f(x) 2 y)
00,0 00,080=0
00,1 00,0&1=1
01,0 0L1&0=1
01,1 01,1&1=0
10,0 10,020=0
10,1 10,1&0=1
1,0 1,080=0
1,1 1L1e0=1

And corresponding entanglement block matrix can be written as:

(00| (01] (10] (11|

100) I 0 00
Up= [01) 0o [c] oo
10) 0 0 I 0
11) 0 0 0 I

Figure 2¢ demonstrates the result of the application of this operator in Grover’s QSA.
Entanglement operators of Deutsch and of Deutsch-Jozsa’s algorithms have the same
form.

Ezample 2. Entanglement operator for binary function: f : {0,1}* — {0,1}?, such
that f(z) = 10| ,_g; 11 00| ,40y,1, and

(of (o1 (1o (11

|00) Igl 0 0 0
Up=|01) 0 0 0

110) 0 0 Il 0

1) 0 0 0

Entanglement operators of Shor’s and of Simon’s algorithms have the same form.
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3. Grover’s quantum search algorithm: Case study

From Item 1. Grover's search problem [4] is so stated:

I A function f {0.1}" —{0,1} such that Ixe{0.1)":
nput " '

(fAAx)=1 AV¥ye {0,11" xzy=/1=0)
Problem Find x

The problem is to decide what class the input function belonged to. It is harder
because we are dealing with 2" classes of input functions (cach function of the
kind described constitutes a class). Description of the Grover's algorithm is given
in Appendix. The whole algorithm is depicted in the scheme of Figure 1b, where
Up is an unitary operator that describe entanglement. and D,, is Grover’s diffusion
operator that describe interference. Differently from other QAs, in Grover's algorithm
it is possible to iterate h times step 2 and step 3 (Entanglement and Interference
blocks) until the best solution is reached. Moreover interference part is governed by
the matrix D,,, in Eq. (11), whose elements arc:

- 1/2"‘1—1 =14
b VA Y

The final output vector is given by the formula
V=[(Dn®I) Up)"-""H (18)

An example of evolution of Grover's algorithm {18) with n =2 is given in Figure
2. Figures 2, a-d are reported in order basis vector and superposition, entanglement
and interference output vectors respectively. Each couple of elements having opposite
sign represents the probability amplitude of a certain element of the database. This
fact will be very useful for the circuit design because it allows to storing only half-
size vectors. The result, obtained after h iteration, minimize the following Shannon

entropy:
an +1

Sth)y == lipx()l*log fpx(h)], (19)
k=1

where ¢ x(h)is the k** element of output vector taken after h iterations.

4. Results of classical QA gate simulation

Analyzing quantum operators presented in the section 2 we can do the following
simplification for increasing performmance of classical QA simulations: a) All quantum
operators arc symmetrical around main diagonal matrices; b) State vector is allocated
as a sparse matrix; ¢) Elements of the quantum operators are not stored, but calculated
when necessary using Egs. (6), (11), and (17); and d) as a termination condition we
consider minimum of Shannon entropy of the quantum state, calculated as:

2m+n

§5h=— %" pilogp; (20)
i=0
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Calculation of the Shannon entropy is applied to the quantum state after interference
operation [6]. Mininmm of Shannon entropy Eq. (20) corresponds to the state when
there are few state veetors with high probability (states with minimun uucertainty).
Selection of appropriate termination condition is important since QA's are periodical.

Figure 4 shows results of the Shannon information entropy caleulation for the
Grover's algorithm with 5-inputs. From Figure 4 follows that for five inputs of Grover's
QSA au optimal number of iteration for successful result is four.

- " E] o S e K] it 2

Figure 4: Shannon entropy analysis of Grover’s QSA dynamics with five imputs

Table 2: Temporal complexity of Grover's QSA sunulation on 1.2GHz computer with

two CPUs

Namber of Temporal complexity, seconds

n Approach 1 Approach 2
iterations /1
(one iteration) (h iterations)

10 25 0.28 ~0
12 50 544 ~0
14 100 99.42 -0
15 142 489.05 ~0
16 201 2060.63 ~0
20 804 - ~0
30 25.375 - 0.016
40 853.549 - 4.263
50 26.353.589 - 12.425

After that probability of correct answer will decrease and algorithm may fail to
produce correct answer. Simulation results of fast Grover QSA are summarized in
Table 2.

Numbers of iterations for fast algorithm were estimated according to termination
condition as minimum of Shannon entropy of quantum state vector.

The following approaches were used in simulation.

Approach 1: Quantum operators are applied as matrices, elements of quantum
operator matrices are calculated dynamically according to Egs. (6), (11). and (17).
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Classical Hardware limit of this approach is around 20 qubits, caused by exponential
temporal complexity.

Approach 2: Quantum operators are replaced with classical gates.

Product operations are removed from simulation according to [7]. State vector
of probability amplitudes is stored in compressed form (only different probability
amplitudes are allocated in memory).

Mamury alucsiad r wiels vactor S

LE oY

USRS

W
cF

Cutnl nunbier

Figure 5: Spatial complezity of Grover QA simulation

With second approach it is possible to perform classical efficient simulation of
Grover's QSA with arbitrary large number of inputs (50 qubits and more).

With allocation of the state vector in computer memory, this approach permits to
simulation 26 qubits on PC with 1GB of RAM. Figure 5 shows memory required for
Grover algorithm simulation, when whole state vector is allocated in memory: Adding
one qubit require double of the computer memory needed for simulation of Grover’s
QSA in case when state vector is allocated completely in memory.

Temporal complexity of Grover’s QSA is presented in Figure 6. Iu this case state
vector is allocated in memory, and quantum operators are replaced with classical gates
according to |4, 7}.

Fastest case is when we compress state vector and replace quantum operator
matrices with corresponding classical gates according with |4, 8, 9]. In this case we
obtain speed-up according to Approach 2.

Let us consider a new design method of HW architecture and implementation for
main quantum operators using as Benchmark Grover’s QSA [5] and fast algorithm
simulation of main quantum operators described above in item 2 of present article.

5. HW implementation of main quantum algorithm operators

It has been found [5, 10, 11| a new method and circuit that implements the
operations performed in second and third step of a quantum algorithin (the so-called



70 _ ULYANOV LS., PORTO M., ULYANOV S.V.

Tem pol comp b1 by, seC

Qubityimber

Figure 6: Temporal complexity of Grover’s QSA

entanglement and interference operators). able to perform Grover interference without
products.

The proposed circuit, which is one of the first hardware realizations of QA, is also
the first one not based on matrices products but on functional relation between input
and output vectors. A general form of the entanglement output vector Uy = Gin Eq.
(18) can be the following:

G=1[91,92..... Gireons g2 ne1] (21)

where g; =y & f| | INTG-1) and y, is the general term of superposition transformed
in a suitable binary value.

The so-called superposition vector is fixed if we choose as input the canonical base.
In order to find a suitable input-output relation, some particular properties of matrix
D,, % I have to be taken in consideration.

The generic element v; of V(that is our output in Eq. (18)) can be written as
follows in function of g;:

o
2r-_1 T, g2i—1— gi . for i odd
j=1
Y = Jg“ (22}
‘2"1"I 2 g2 — gi »  for i even
Jj=1

This fact allows a great reduction of the number of operation (and thercfore of
electronics components) and consequently a significant increase of computational
speed.
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According to the proposed high-level scheme [4. 5. our circuit realization can be
divided into two main parts:

Part I: Base module. It implements a 3-qubits system and it performs step-by-step
calculation of output values. This part is divided in the following subparts:

a: Entanglement c: Interference

b: Pre-Interference d: Modular interface

Part 1I: Control module. It performs entropy evaluation in Egs (19) and (20),
vector storing for iterations and output visualization. This part also provides initial
superposition of basis vectors |[0> and |1>.

Entanglement operator composed by eight driven switches (see, Figure 7).

Referring to Figure 9, the switches (MAX304) present in the cireuit are only the
odd ones. They receive the clements of initial superposed vector in couples (Voutl and
VN1, Vout2 and VN2...) and perform the exchange according to the signal coming
from the encoder.

The output signals (O1,...,08) are the odd values of the entangled vector (even
values are correspondent opposite valuc). These values are summed and scaled (the
scaling factor is 1/ in the case of three qubits) by the OPAMP (see Figure 8), which
constitutes the pre-interference step.

The dilferences among this sum and each one of the elements are performed by
the Interference block, whose structure is reported in Figure 9.

6. Modular system

In order to realize modular system, some devices has been introduced. First and
more important is operational amplifier (see, Figure 10). Labels M1, M2, M3 in Figure
10 are joined with corresponding others of different modules, performing parallel
configuration. By this way output of two modules was summed and divided by 2,
which is the result we wish to obtain in order to realize Grover algorithm [4,5] for
n+ 1 qubits. In fact each module performs three qubits QSA and by adding a second
module we can realize four qubits QSA. Each module must be unequivocally identified
through his address (a selector assign this address on cach one).

So the control module can send information to a specified module. The control
module [5] send bit stream containing

w e
[Ta) L3 LS
N1 iHs [ (17}
AL N1 NO4 = Tt A5 Ve NO! K4 My
T i == =
Raxl NCI NC4 Finad L NC1 Hes 77 e
i e o n Ve #ﬂ
L GHD W& GRD  ME
- - el AL *J"' oxah NC2 Ca g’
T e e s g i LN e e g
- sar uos . vw gy W Hb—riowe
m M INZ WY

Figure 7: Entanglement circuit
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address and data to bus. On each module there is a device (74HC85A in Figure 11)
that compares address sent by CPLD with the label of module and, if these are equal,
allows it to process data.

Therefore these address indicate which modules must be in third state or which
other must communicate through D/A and A/D converters with CPLD (see, Figure
11).

As previously reported the Control module performs entropy evaluation, vector
storing for iterations and output visualization; however its main aim is to manage
algorithm iterations.

Control module, that has been realized in digital way (CPLD programmable logic),
is able to communicate with Base Modules through addressing system previously
described (see in Figure 11 comparator ‘7T4HC85A") and D/A, A/D converters.

Vour

(i

Figure 9: Interference circuit

Figure 13 shows the main board (n = 3) for Grover's QSA that realized the
modular structure.

Figure 14 shows Pre-prototype board implementation of 3-qubit version of Grover's
QSA. With this pre-prototype successful experimental simulation result of Grover's
quantum gate Eq. (18) is achieved.

Information criteria as minimum Shannon eniropy defined in Eq. (19) and zq =
|01) = 1 as searching element are used. Analysis of these experimental results in detail
is developed in [9].

In order to provide the target value (element to be find) each base module has a
latch able to store it (sce, Figure 12).

General methodology of quantum algorithm gate design and SW simulation results
are described in |8 - 11].
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7. Conclusions

1.

2,

Efficient simulation of QA’s on classical computer with large number of inputs
is difficult problem. For example, to operate only with 50 qubits state vector
directly, it is necessary to have at least 128T'B of memory (for the moment largest
supercomputer has only 10TB [12]). In present report, for concrete important
example as Grover's QSA, it is demonstrated the possibility to override spatio-
temporal complexity, and to perform efficient simulations of QA on classical
computers.
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Figure 12: Modular Interface, Latch

Design method and hardware implementation of modular system for realization
of Grover’s Quantum Search Algorithm are presented. Hardware design of main
quantum operators for quantum algorithm gates simulation on classical compu-
ter is developed. Hardware implementation for realization of information criteria
as minimum Shannon entropy for quantum algorithm termination is demon-
strated.

. These results are the background for efficient simulation on classical computer

the quantum soft computing algorithms, robust fuzzy control based on quantum
genetic (evolutionary) algorithms and quantum fuzzy neural networks (that
can realized as modified Grover’s QSA), Al-problems as quantum game's gate
simulation approaches and quantum learning, quantum associative memory,
quantum optimization, ete. [5, 8, 9, 14 - 24|.
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=

Figure 13: Main 3-qubits board with modular structure

Figure 14: Pre-prototype of Grover’s QSA gate
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Appendix: interpretation of main quantum operators in grover’s QSA

We present the steps in Grover's algorithm [13] with the quantum circuit shown
in Figure 1b.

Al. Grover’s quantum search algorithm.

Step 1. Initialize the quantumn registers to the state

¥y) = 00...0) [1).

Step 2. Apply bit-wise the Hadamard one-qubit gate to the source register, so as to
produce a uniform superposition of basis states in the source register, and also to the
target register:

A |
a) = U™ ) = 2(,&1),2 Z o) > (1)l |
y=0,1
Step 3. Apply the operator
2" -1

Us., : s) == Uy, , [¥n) = 2(”,,,2 Z =@ iz} 3 (-1)¥ |y) |
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— |xg) if z = zp,
Let U,,be the operator by Uy, [z) : = (1 — 2|zo) (zo|} |z} = { +~l|:r,;’) i x -‘;él?[[)]

that is, it flips the amplitude of the marked state leaving the remaining source basis
states unchanged.

Grover presents this operator graphically with a sort of “quantum comb” where
the spikes denote the uniform amplitudes of state (Step 2) and the action of Uy, is
to flip over the spike corresponding to the marked item.

We realize that the state in the source register of Step 3 equals precisely the result
of the action of Uy, Le. [¢3) = ([1 — 2|zo) (zo|] @ 1) | ¥2).

Step 4. Apply next the operation D known as inversion ebout the average. This

operator is defined as followsD,, = — (U§" ® 1)Uy, (U5" & I), where Ug,is the
operator in Step 3 (forzy, = 0) The effect of this operator on the source is to
r,ransformz oz |z) — Z(—ax V) |z), where (a) := 27" Zaris the mean of the

amphtudes, so its net eﬂ'ect is to amphfy the amplitude of lIn) over the rest.

Step 5. Iterate Steps 3 and 4 a number of times m.

Step 6. Measure the source qubits (in the computational basis). The number m is
determined such that the probability of finding the searched item zp is maximal.

Remark. The basic component of the algorithm is the quantum operation encoded
in Steps 3 and 4, which is repeatedly applied to the uniform state |¢2) in order to
find the marked element.

Remark. Although this procedure resembles the classical strategy, Grover's neatly
designed operation enhances by constructive interference of quantum amplitudes (see
Table 1) the presence of the marked state one looks for.

It is possible to give a more general formulation to the operators entering Steps 3
and 4 of the algorithm [13]. To this end it is sufficient to focus on the source qubits
and introduce the following definitions.

A2. Grover’s QA main operators and its properties. A Grover operator G is any
unitary operator with at most two different eigenvalues, i.e., (& is a linear superposition
of two orthogonal projectors P and Q:

G=aP+8Q P=P @=Q P+Q=1

where a, 8 € C are complex numbers of unit norm.

A Grover kernel K is the product of two Grover operators: K = G2Gy. Some
elementary properties follow immediately from these definitions: 1) Any Grover kerncl
K is a unitary operator; 2). Let the Grover operators (1, G2 be chosen such thatGy =
aPry +0Qz4 Prg+Qzy =1,G2 = yP +6Q, P+Q =1, with P, | = |g) (xo, and
P given by the rank 1 matrix

1 1
This is clearly a projector P = |kg) (kg| on the subspace spanned by the state|ko) =
7%,-(1, ..., 1)t, where the superscript denotes the transpose.

Then, if we take the following parameters, a = —1,0 = 1,y = —-1,§ = 1,
the Grover kernel K reproduces the original Grover’s choice. This property follows
immediately by construction. In fact, we have in this case Gy = 1-2F,, =: G, whilst
the operator Ga = 1 — 2P caincides (up to a sign) with the diffusion operator D
introduced by Grover to implement the inversion about the average of Step 4. The
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iterative part of the algorithm in Step 5 corresponds to applying m times the Grover
kernel K to the initial state |z;,) := 2°™/23" |z), which describes the source qubits

T
after Step 2, searching for a final state |zy) of the form |z;) := K™ |z;,) such that
the probability p(zo) of finding the marked state is above a given threshold value. We
may take this value to be 1/2, meaning that we choose a probability of success of 50%
or larger. Thus, we are seeking under which circumstances the following condition
p(zo) = |{xo] K™ IJ:,-ﬂ)I2 = 1/2 holds true. The analysis of this probability gets
simplified if we realize that the evolution associated 1o the searching problem can be

mapped onto a reduced 2D-space spanned by vectors{[zu) yELy = 7N1"l'1' ¥ oz g

r#To
Then we can easily compute the projections of the Grover operators Gy, G in the
reduced basis with the result

clz(g 2) Gzz(g 2)+(7-6)(& y:w;‘f)

N N

Form now on, we shall fix two of the phase parameters using the freedom we have to
define each Grover factor in K up to an overall phase. Then we decide to fix them as
follows: & = v = —1. With this choice, the Grover kernel K takes the following form
in this basis

K 1( 1+6(1-N) -B(1+4) Nfl).

"N\ (Q+)VN=1 B(1+6-N)

The source state |z,) has the following components in the reduced basis

len) = —-—-lﬁlmo)+ \Iij—vq—-lﬂau_).

In order to compute the probability amplitude inp(zg), we introduce the spectral
decomposition of the Grover kernel K in terms of its eigenvectors {|k;), |kz)} with
eigenvaluese™', "2, Thus we have

2
a(zo) := (xo| K™ |2in) = % Z {I(ro | k)2 + VN =1 (o | k;) (kj | xl)}eimw,_

Jj=1
This in turn can be cast into the following closed form:
@l K™ lain) = e (o + (™29~ 1) (oo | o) (ke | 7)) . (A1)

with Aw = ws — wy. In terms of the matrix invariantsDetK = 34, Tr = —(8 +
)+ (1+3)(1+ 5):,{,—, the eigenvalues ¢ » := e'*2are given by

G2 =LK F \/—DetK + L(Trk)2. (A2)
The corresponding unnormalized cigenvectors are

AT/ —4(DetK)N2 4+ A2
[k1,2) 2(l+6)1 -1 ;

withA4 := (8 — )N + (1 — 3)(1 + 4). Although we could work out all the expressions
for a generic value N of elements in the list, we shall restrict our analysis to the case
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of a large number of elements, N — oc. Thus, in this asymptotic limit we need to
know the behavior for N 2 lof the eigenvector|ks), which turns out to be

i HT 000
1

Thus, for generic values of 3, we observe that the first component of the eigenvector
dominates over the second one, meaning that asymptotically |kg) ~ |zp) and then

(zo | ka) (ka | Zin) = O(%).

This implies that the probability success will never reach the threshold value. Then
we are forced to tune the values of the two parameters in order to have a well-defined
and nontrivial algorithm, and we demand3 = 6§ # —1. Now the asymptotic behavior
of the eigenvector changes and is given by 2 balanced superposition of marked and
51

unmarked states, as follows|kz) ~ % ( - 1/ )

This is normalized and we see that none of the component dominates. When we
insert this expression into (1) we find

1 imA
[(zol K™ lzin)| ~ 5 16] |4 — 1] ~

sin(%m&w)l ;

This result means that we have succeeded in finding a class of algorithms, which are
appropriate for solving the quantum search problem. Now we need to find out how
efficient they are. To do this let us denote by M the smallest value of the time step
m at which the probability becomes maximum; then, asymptotically, M ~ || 7/Aw |].

As it happens, we are interested in the asymptotic behavior of this optimal period
of time M. From the Eq. (A2) we find the following behavior asN — oco:Aw ~
\—/%Re\/g. Thus, il we parameterized = €'®, then we finally obtain the expressionM ~

Therefore, we conclude that the Grover algorithm of the class parameterized by ¢
as a well-defined quantum search algorithm with an efficiency of orderO(v/N).

Remark. There have been many applications of Grover’s work to quantum sear-
ching: finding the mean and median of a given set of values; searching the maximum/
minimum; searching more than one marked item, quantum counting, i.e., finding the
number of marked items without caring about their location, etc. There is also a nice
geometrical interpretation of the Grover kernel K = —G/5G1in terms of two reflections
G, and —Gy, one about |z ) and the other about |z;,), producing a simple rotation
of the initial state by an angle 6 = 2 arcsin 71!71' in the plane spanned by |zg)and |z ).
With this construction it is straightforward to arrive at the following exact condition
for the optimal value m of iterations:

m= - - =k
T2 2arcsin7‘§ '

Finally, it has been shown that Grover’s algorithm is optimal, that is, its quadratic
speed-up cannot be improved for unstructured lists.
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Let us point out the following interpretation of the Grover's operators. Let us
think of the computational basis {|z)} as a coordinate basis in Quantum Mechanics
and introduce the quantum discrete Fourier transform in the standard fashion

N-=1
1 ;
18) : = Upprlz) = —= 3 e¥"¥/N |y),
v N =0

The transformed basis { |#) }can then be seen as the dual momentum basis. Then,
it is easy to see that in such a basis the projector operator P takes the following
form: UB}?TPU prr = |0) (0] =: . This means that the Grover operator G, takes
the same matrix form in the momentum basis as the Grover operator GGy in the
coordinate basis. They are somehow dual of each other. The original Grover kernel
takes then the formK = UpprGz=oUpprGz,, which shows that a Grover kernel has
a part local in coordinate space and another part, which is local in momentum space.

A3. Aboul the stability of Grover’s algorithm. The expression for optimal number
of iterations M can also be given another meaning regarding the stability of the
Grover’s case ¢ = (). It is plain that under a small perturbation d¢ around this value,
its optimal nature is not spoiled in first order for we find a behavior, which is quadratic
in the perturbation, namely, M ~ (1 + 0.125(8¢)%)v/N. This stability considered
here is with respect to perturbations in eigenvalues (or eigenvectors) in the reduced
2-dimensional subspace specified by the quantum search problem. We also require
these types of perturbations to hold in all iterations. However, if we happen to choose
a Grover kernel with a ¢ far from 0 we may end up with a searching algorithm for
which the leading behavior order O(\/N ) is masqueraded by the big value of the
coeflicient and the time to achieve a succeeding probability becomes very large. For
instance, we may have a Grover kernel with a behavior M ~ 103v/N and for a value
of it would turn out as efficient as a classical algorithm of orderO(N) = 10°. Thus,
the limit ¢ — 7 behaves as a sort of classical limit where the quantum properties
disappear. ‘

Remark. We find this behavior as reminiscent of a quantum phase transition
where the transition is driven by quantum fluctuations instead of standard thermal
fluctuations. In this type of transition each quantum phase is characterized by a
ground state, which is different in each phase. It is the variation of a coupling constant
in the Hamiltonian of the quantum many-body problem which controls the occurrence
of one quantum phase or another in the same manner as the temperature does the
job in thermal transition. In our case we may consider the two different asymptotic
behaviors of the eigenvector |k2) as playing the role of two ground states. Following this
analogy, we may sec our family of algorithms parameterized by a torusT = §' x §1,
where the parameters [ and § take their values and the difference g := 3~ d is a
sort of coupling constant which governs in which of the two phases we are. When
g # 0 we fall into a sort of disordered phase where the efficiency of this class of
Grover’s algorithms is spoiled. However, when g = 0 we are located precisely at one
equal superposition of the principal cycles of the torus which defines a one-parameter
family of efficient algorithms.

A4. Robustness of Grover’s Algorithm: The influence of initial conditions. Next
we shall address the issue of to what extent this one-parameter family of algorithms
depends on the choice of initial conditions for the initial state|z;,). We would like to
check that the stable behavior we have found is not disturbed under perturbations of
initial conditions. Let us consider a more general initial state|z;,), which is not the
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precise one used in the original Grover’s algorithm but instead it is chosen as

a N-1
lﬂ.‘,'n> = ﬁ [.’EQ) + b T [IJ_)1
where a and b are chosen to satisfy a normalization condition. Then, it is possible to
go over the previous analysis and find that the probability amplitude is now given by

(zo| K™ |2in) = €™ (% + ("B — 1) (@ | k) (k2 | 1',-,,)) .

where now the new initial state is |z;n). We have to distinguish two cases: (i) the
coefficient a of the marked state is order 1; and (i) it is order bigger than 1, say
of orderO(v/N). In the latter case (i), it means that the initial state is so peaked
around the marked state that we do not even need to resort to a searching algorithm,
but instead measure directly on the initial state to find successfully the marked state.
Therefore, we shall restrict to case (i) in the following. Now, the key point is to
realize that all the previous asymptotic analysis is dominated by the behavior of the
eigenvector |k;) given by expression for|kz), which is something intrinsic to the Grover
kernel and independent of the initial conditions.

Thus, if condition # = § # —1 is not satisfied, then as we are in case (i) the
first term in the RHS of last equations is not relevant and we are led again to the
conclusion that the algorithm is not efficient. On the contrary, if condition 3 = 4§ # -1
is satisfied, the same mechanism operates again and the algorithm has a probability
of success measured by |(xo| K™ |z in)| = |b|sin(28¢) with Aw also given by
above expression. Then we may conclude that the class of algorithms is stable under
perturbations of the initial conditions.




