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The problems of designing industrial controllers and control systems with various degrees of
intelligence are discussed. The primitive nature of existing hardware and software support of
knowledge-based control processes and methods of designing intelligent control systems is noted. The
need Lo develop a special procedure for designing such conlrol systems is emphasized. The principles
of a design procedure for mululevel intelligent automatic control systems are proposed. The features
of the design of control systems that are intelligent '‘in the large™ and **in the smail™” are analyzed.
Numerous examples of designed systems are presented.
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INTRODUCTION

Traditional design methods have long included qualitative characteristics to describe models of control processes in
order to improve estimates of the adequacy of model formalizations and to improve the performance of controilers and
automatic control systems (ACSs) when there is information uncertainty regarding the dynamic behavior of complex
controlled systems or the environment. When the qualitative characteristics of the dynamic behavior of weakly-structured
conirol systems are introduced into the design processes, it is necessary to employ nonclassical optimization criteria {1].
Qualitative atiributes commonly include such concepts as insensitivily, sensitivity, stability, adaptation, elc. [1-3]. By
taking into account and testing such qualitative attributes in the design of controllers and ACSs it is possible to reduce the
need to generate and analyze nonclassical optimization criteria considerably [1-3]. Extremal searches based on nonclassical
optimization criteria make it necessary to investigale analogs of logical dynamical models of control processes [1, 3, 4]
followed by linguistic approximations of such processes [5, 6].

Analysis of the results of simulation and practical applications of qualitative attributes in a linguistic approximation
of specific fuzzy controllers and ACS designs has confirmed the effectiveness of the new intelligent technology for fabricating
flexible mobile control systems for complex (weakly structured) industrial systems {3, 5-26]. The synthesis of a wide
variety of design methods and the use of commercially developed prototypes of fuzzy controllers and ACSs [5, 18,23-29]
have shown that the design procedure and the hardware and software support for such intelligent systems remain in their
wnitial development stage [30].

In the development of engineering methods of designing problem-oriented knowledge-based control systems (gen-
crally, fuzzy expert systems [31, 32| designed as intelligent *‘in the large™* [5]) it has been determined that, given the
application conditions, such design processes require additional researchand special theorctical substantiation. One example
15 the attempt to formulate a philosophical reexamination of the relationship between fuzzy logic and the Japanese inter-
pretation of the metaphysics of “‘irrational™” logic as well as an interpretation of traditional Tai-chi symbols and design
principles [25].

The subject of this paper, which is a continuation of [5], is the problems of developing a special procedure and the
principles of organizing the design of knowledge-based fuzzy control systems. Examples of systems that iliustrate certain
features of the procedure proposed here are presented.

*Qriginally published in Tekhnicheskaya Kibernetika, No. 5, 1993, pp. 197-220.
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1. A Procedure for Designing Intelligent ACSs

The primary object of research in industrial inteliigent control systems includes: problems relating to the development
ol multilevel architectures of knowledge-based control systems (33~35] and the corresponding classification of problem-
oricnted problems in industrial automation [36], and the rational construction of knowledge bases and effective analytic
models of knowledge-based control processes [37] in accordance with the principles of organizing inielligent control systems
and levels of intelligence in ACSs formulated in [S]. A special procedure for designing such systems is required Lo solve
these problems.

The proposed procedure is based on methods for choosing means of imparting intelligence to achieve the required
dynamic behavior of the ACS in cases where traditional methods of improving the dynamics of system behavior cannot be
used to solve this problem. In such cases, knowledge-based tools are employed. The intelligent tools selected are employed
to overcome the uncertainty of information on the environment or the controlled system (its behavior). It should be
emphasized that the problem of improving the dynamic characteristics of a system can be solved by various techniques in
the search for the required behavioral form: either by improving control quality through the use of traditional methods
{choosing amore complex ACS modelon the execution level) that employ simple tools on the intelligence level or, alternately,
by developing effective intelligent tools that improve the characteristics of a simple model on the execution level. In the
first case, the model of the execution level becomes more complex because of the hardware implementation of the functions
controlling the qualitative attributes describing the control process. In the second case. a simpler model of the execution
level may be chosen by increasing the intelligence level of the ACS and by programming changes in the qualitative attribules
describing the knowledge-based control process [30, 39]. Thus, the problem of identifying control functions realized on the
lowest sublevel of the execution level [5] must be solved at the initial design stage.

Consequently, the design procedure for multilevel intelligent ACSs can be based on two methods: a method of
generating (calculating) models of the execution level (by identifying adequate control functions), and a method of matching
(or coordinating) the execution and intelligence sublevels. In this case, it may be useful 1o have a method of identifying
initial simple models (followed by comresponding expansion) for choosing adequate intelligence sublevels {39].

The method of coordinating (matching} execution and intelligence sublevels is illustrated in Fig. 1. The execution
levels are shown on the left in Fig. 1, and the intelligence levels for constructing ACS models are shown on the right. It is
obvious from Fig. | that the degree of correlation can be determined by different techniques. Each of the versions chosen
will determine the complexity of the hardware and software employed, while the final version for choosing the ACS model
will be based on simulation of the system under design.

This approach to constructing a procedure for designing intelligent ACSs also includes: an estimate of the effect of
incorporaling the intelligence level on the functional capabilities of the control processes, a classification of knowledge -based
ACSs as well as those based on the complexity of the controls executed, a determination of the role of the knowledge base
{with an estimate of its completeness) in the distribution of functions among the execution and the intelligence levels,
calculation of ACS structures on an execution level of minimum complexity for a given level of intelligence (analysis) and
vice versa (a synthesis problem), and a solution of the problem of system integration and decomposttion of knowledge-based
ACS structures {on both the execution and the intelligence levels).

Methods of simulating fuzzy models of industrial fuzzy neural network ACSs [40-44] 10 extract expert informalion
from the fuzzy behavior of a control system for developing corresponding knowledge bases and constructing membership
functions of the fuzzy *‘input-output’’ relations piay a special role in this procedure. Consequently, two phases of constructing
fuzzy models of intelligent ACSs are examined in this case. The first phase — simulation— makes il possible (o establish
fuzzy ‘‘input-outpul’' relations by organization of the leaming and adaptation processes on the fuzzy neural networks
{FNNs) and 1o formulate the structure of the knowledge base of an ACS with fuzzy inference mechanisms. Such a phase
15 commonly referred to as the leaming phase [25]. In addition to running fuzzy identification algorithms [46, 47] and
nonlinear fuzzy regression models [48], this stage involves correct formalization of a description of the control process of
the test fuzzy object. The second phase involves the design and realization of the fuzzy models of the controllers and ACSs
tor which the structured knowledge is used in the control processes [5, 6].

Note 1. There are certain additional features when employing fuzzy neural networks in the first stage of the design
of fuzzy controllers and ACSs within the framework of this procedure. A variety of leaming methods based on fuzzy neural
networks are employed at this stage [41-44, 49]. In particular, a fuzzy associative memory (FAM) neural network model
{44, 49] has been used effectively in simulation for adaptive formulation for ““if ... . then ...’ production rules. The
formation of fuzzy production rules based on FNNs as a means of extracting the representing knowledge represents one of
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Fig. 1. A procedure for designing ACS structures (on the execution and intelligence levels).

the many algorithms for supplementing knowledge bases of fuzzy intelligent controllers and ACSs [49--54]. In particular,
these methods play a special role in identification problems [49], in developing procedures for estimating the sensitivity
and comprehensiveness of knowledge bases [40-43], and in estimating the effects of exiernal factors and information
ambiguity on the structure of these control processes. For example, estimates of the sensitivity and robusiness of the
knowledge base of fuzzy controllers can be obtained by FNN simulation when a subset of random production rules or
otherwise *‘sabotage’” fuzzy inference rules with a moderated truth level of the reasoning process are incorporated in the
FAM. The resulis of sirnulation show [51. 55] that when the first design phase is employed, robustness of the dynamic
behavior of a fuzzy controller is retained with as much as a 50% reduction in the truth level of the fuzzy inference.

The effective use of FNN methods in problems of controlling complex robotic syslems is discussed in [40-44, 55~ 58].

Definition [39). The procedure for designing multilevel intelligent ACSs based on successive (and possibly. multiple)
application of formation {calculation) and matching (coordination) methods employing simulation estimates is referred 1o
as a FZUP-system design procedure {or an FZUP-procedure).

Hardware and software support of design procedures based on fuzzy processes, fuzzy memory. and fuzzy flip-Nlops
are widely used in the systems for designing fuzzy controllers and ACSs [5, 39—-69]. The development of microelectronic
technology and of a procedure for organizing computalional processes [70} has made it possible o develop a fundamentally
new type of fuzzy processor [71] by means of quantum-mechanical Josephson junctions. Such an approach enables the
inference specd as well as storage space for production rules to be increased considerably. An example of a hard-wired
FNN is the FAM (72] design for realizing control processes based on the hybrid application of neural and fuzzy technologies
to design processes [73-75].

The development of intelligent system design has required corresponding software [76]. Software packages have
been developed for the design and support of fuzzy controllers and ACSs with different problem onemtations {5, 77].

Expert systems {(ESs) used as a special intelligent ool for adjusting computer-aided design systems within the
framework of the design procedure shown in Fig. 1 can be classified as among the software tools available for supporting
the design of intelligent controllers and ACSs. An investigation of the general principles of constructing intelligent machines
|76] and their relation 1o control processes [78, 79] together with Lhe subsequent development of cognitive processes for
designing control systems operating under conditions of uncertainty ol various physical {information) types has made il
necessary 1o improve control quality by using knowledge bases of active expert systems that in this case are componeni
parts of models of the control system under design (80-82).
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An analysis of the qualitative features of the dynamic behavior of control systems as well as the uluimate capabilities
of information control processes [3, 4], in conjunction with model idenufication, learning, and adaptation methods, reveal
the extensive diversily in developing a procedure for the design of ACSs based on variously structured knowledge and the
structural hierarchy of the ACSs themselves [83-96].

An additional analysis of applied methods of investigating and simuiating knowledge-based systems has confirmed
[79.97.98] the value of combining traditional methods from automatic control theory with the methods of intelligent sysiem
and cognitive process theory. In this case, itis convenient to analyze and synthesize the intelligent control systems themselves
by traditional control theory methods (for example, for estimating the robustness, sensitivity, and stability of the dynamic
behavior of intelligent ACSs to changes in production rules in the knowledge base [88-93, 99-103]). Estimates from a
qualitative analysis of the dynamic behavior of intelligent ACSs in combination with neural network simulation in turn
comprise the basis for developing a knowledge base for choosing corresponding control laws in an expert system for control
systems [79, 104] and for determining the degree to which models accuralely represent the actual system in the identification
of control processes (95, 96].

Note 2. The joint use of neural network sirmulation methods and the development of intelligent ACSs based on
cognitive processes has led to a new class of ACSs that are intelligent **in the large’": cognitive controllers and control
systems [79, 105-108]. In the special case (when only a single FNN fuzzy neural network based on an FAM is used) such
controllers become fuzzy controllers and ACSs [107, 109). Further progress in the development and application of very
farge system integration ( VLSI) circuits to fuzzy processors based on fuzzy flip-flops will lead to improvements in hardware
and software support for such cognitive controllers and will lead to the development of specialized hardware [110}, The
use of such cognitive controllers that are intelligent *‘in the large’’ will make possible a significant improvement in the
mobility of autonomous robots.

2. Examples of the Use of Aclive Expert Systems in the Simulation of Intelligent Controllers

As an illustration, let us compare a simulation of the dynamic behavior of a simple control system whose control loop
includes a traditional proportional integrating and distributing (PID} controller and a controller with an active expert system.
According to the design procedure presented in Fig. 1, such a situation corresponds to the case of a lower execution level

and upper control coordination level.

Example 1. A linear system with a delay and a transfer function of the type ®(s)= 0'(%%%'1—;2 will be used

as a model of a control system describing the actual process of loading coal into a blast furnace {111]. The purpose of the
analysis was to determine the response of the given control system o typical dynamic inputs for various control laws and
criteria. In the first case, a PID-controller was used. Optimal selection of the PiD-controller parameters was accomplished

by using a mean square ¢ (1) criterion of the type ¢ (n) = min 3, €2 (i) T, by the method described in [111] as the choice
i=1

of the control law & (n} = u (n - 1) + ke (m) + k; Ae (n). Paramelers k, and k; were delermined on the basis of minimization
of a cost functional of the type

Plk(n) + A, k(n) + &;) = Plk(n + 1), k(n + 1)] = min [el(n + 1) + i Q(:')J,

where P is the cost functional, A, is the increment of &, and A, is the increment of .

A typical block diagram of the simulation of the dynamic behavior of a controlled system (CS) based on active expert
systems is shown in Fig. 2a [112]. The database of this ES containg information on the experimental measurement data
relating to the actual characiteristics of the dynamic behavior of the test control system (such as the duration of the transient,
the delay, the magnitude of the overcontrol, the overcontrol time, the amplitude of the (ransient, etc.) as well as the types
of crteria and control laws, limiting values characterizing the stability of the CO (from the knowledge inference unit in
Fig.2a), the resulis of simulation, etc. Such active experl systems for control processes are classified as second-generation
deep knowledge representation expert systems [88, 89, 104], whose structure and functions have been described in [113).
Theanference mechanism (in the inference rule selectionunitin Fig. 2a) employs three modifications of decision (production)
rules: (1) the present control algorithm, which satisfies the required control crterion, is used or cerlain paramelers of the
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Fig. 2. Simulation of the dynamic behavior of a controlled system (1 is a PID-controller; 2 is an intelligent controller with

an expert system): a) block diagram of the expert system for simulating real-time control; b) the transients of a linear

controlled object under delay with stepped input; ¢) the transients of a nonlinear controlled system; d) the transients of a
linear controlled system with random inputs.
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control algorithm require modification; (2)a new control algorithm is chosen; (3) two or more control algorithms are allowed.
Such an assumption is based on the hypothesis that a broad range of errors or error rates exists on gifferent segments of the
phase portrait that will lead to a system of alternating structure that uses different control laws on the given segments of
the phase portrait [114), These inference rules and control algorithms take the following form:

RIL: if (e > &), then u, = ug;

R2: if (e <e < &), then u, = kuy;

R3: if (—e <e,<—e), then u, = ke(n) + kAe(n);

R4: if - = Ky,
: (e, < —e), then u, = kuy; , an

RS: if (e,<e s e)and 1l < G, then u, = ke(n) + k, D, e(n);

i}

R6: if (e,<e < e) and lgl > G, then u, = ke[n);

R7: if (e,<e S e) and lgl = G, then u, = kee(n) + kAefn);

R8: .if (e, < ¢ < &) and (G, < lgl = G)), then u, = kye(n) + kAe(n);

R9: if (e;< e < &) and |l > Gy, then u, = ke (n) + kAe(n);

R10:if (el < ¢) and (e e >0andlel <G), then ufn) = u(n — 1) + k,e(n) +
+ kyAefn);

R11: if (lg) s e;) and (e, ¢, > O and &t > G), then u{n) = ufn — 1) + keln) +
+ k,Aefn);

R12: if (lel < &) and (& >0 and e-e_, > 0),then u(n) = u(n — 1) + ke(n) +
+ kAe(n);

R13: i (le! S e)and(e-¢ >0 and e-e,_ <0), then uln) = ufn — 1) + ke(n) +
+ ksax(n);

where e, > €, > €, > €4,

The coefficient ey-eq, and G-G in Egs. (2.1) are positive constants (these constanis are represented on the basis
of prior information and may vary during the simulation). The first group of production rules R1-R9 from Eqgs. (2.1) takes
into account the broad range of the error of e{n) and uses a traditional control algorithm for P-, and Pl-controllers. The
second group of rules R10-R13 takes into account the dynamics of the control system as well as the differential character-
1stics Au(ny of the control process (low level overcontrol, stability of dynamic processes, etc. and checking of the logic
conditions 1n the "if. . ." statement) by applying a control algorithm for a PID-controller. Controller models that use such
expert systems in the controi lop have come to be called expert intelligent control systems (EICSs) Results of the
simulation of the response of a control system to a stepped input are shown in Fig. 2b; the response of the control system
10 a stepped input when there is a significant nonlineanty in the control system with a dead zone is given in Fig. 2¢, and
the results of a simulation for the case of adaptive white noise of uniform intensity and a normal probability distribution
are given in Fig. 2d. It is obvious from Fig. 2b that the response of a control system employing an EICS-controlier
reduces 10 an ideal charactenistic with a minimum overcontrol level and time compared to an optimized PID-controller.
[t ikewise follows from the results of a simulation that a control system with an EICS-controller is less sensitive to very
nenlinear elements (such as a dead zone) compared to a control system employing a PID-controller (see Fig, 2¢) and is
robust with a noisy control input (see Fig. 2d). This example provides a clearer representation of the role of a knowledge
base and logic inference in intelligent controllers designed in accordance with these principles. A number of other
analogous examples can be found in [80,-84, 86-94, 101-104, 112, 114]

Letus consider in greater detail the qualitative estimation of the sensitivity and robusiness of intelligent PiD-controllers
to changes in the larger control laws as well as the degree of complexity of the control sysiem model descriptions.
Example 2, Let us assume that a logic PID-controller has a control law of the form

K-e+ un—-1),if dlel/dt =0,

M = Vi(n) = ug(n — 1) + kKe (n) = kK S e(m), if dlel/d1<0, a2
f=] *
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Fig. 3. Results of the simulation of transients: a) transient in a control system for intelligent (1) and logic (2) PID-controllers
with a control system function of the type ® = exp (-0.05s5)/(1.5s + 1)% b) transient of a control system for intelligent (1),
logic (2),and traditional (3) PID-controllers with a control system transfer function of the type @ = exp (- 1.55)/(0.55 + 1) x
(0.4s5 + 1); ¢) transients for an intelligent PID-controller when there is a change in the form of the control system transfer
function: 1: @ =exp (=0.155)/(1.65s+ 1); 2: D =exp (-0.25)/(0.45+ 1) (0455 + 1); 3: d=exp (=0.155)/(0.45 + 1).

where K 1s a given coefficient of variation, while k is the variable gain. The logical selection of the control law in Eq. (2.2)
will be made depending on the sign of the change in the control error. The control law for an intelligent PID-controller is
formulated in a manner analogous to Example 1 on the coordination level and is described by ES production rules of the

type [115]:

if dlel/dt =z 0, then u(n) = Ke + u,(n — 1), Au(n) = TL [ e(n)dt, (2.3)
I

if dlel/dt<0 and dlel/dt>0,then u(n) = T, -de/dt + u,(n),

if dlel/de<0 and d1él/de < 0, then u(n) =u(n) = Au, + du(n — 1) = @4

=3 Buy =+ [ et 2.5

/=1 1 =i

The control law in this case is chosen based on a supplementary logic constraint in the form of a test of the sign of the
change in control error. Relations (2.3)-(2.5) are descriptions of the P-, I-, and D-controllers and comprise a multimode
PID-controller in the logic sum [115].

Results are given of the simulation of transients for a given control system by using logic (2.2), intelligent (2.3)—(2.5),
and traditional PID-controllers in the control loop for a unit step input signal in Fig. 3. In this case, the following paramelter
values are used in Fig. 3a: K = 100, k= K™' = 0.01 for the logic PID-controller and K = 750, T, = 27, T, - 0.05, T = 0 for
the intelligent PID-controller. The values K = 6.4, k = 1/6.4 are used for the logic PID-controller in Fig. 3b, while K = 11.4,
T,=1.525.7,=0.15,T =0 are used for the intelligent PID-controller. A comparison of the results of the simulation reveals
that the quality of the transients of the control system using the intelligent PID-controller is superior to that of a logic
PID-controller (see Fig. 3a); the intelligent PID-controller has a greater degree of coarseness and adaptation with changes
in the transfer function of the control system compared to the traditional or logic PID-controller (Fig. 3b and c¢).

It follows from Examples 1 and 2 that it is necessary to introduce a two-level design approach to improve the
effectiveness and extend the operating range of traditional controller models: the control algorithm is generated on the upper
(coordination) level and the selected control algorithm is implemented on the lower (execution) level. Consequently, we
arrive at the procedure for designing controllers with different levels of intelligence shown in Fig. 1.
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3. Fuzzy Expent Systems in Intelligent Automatic Control Systems

The further reduction in the accuracy requirements in descriptions of the dynamic behavior of control systems through
linguistic approximation has led to a new principle for designing knowledge bases of active expert systems in terms of the
theory of fuzzy sets {79, 104, 116-121]. This has resulted in the development of a fairly large number of second-generation
fuzzy expert system models [113, 121, 122], widely used in a variety of problem-oriented domains: robotics 5, 119, 123],
fuzzy control systems and fuzzy controllers for atomic control systems [124], man-machine systems [125], hierarchical
supervisory control systems for complex dynamic facilities (such as rotating kilns for annealing and drying, industrial
coolers and chillers [126], etc., [51), in auxiliary control devices commonly used to replace organs in the event of loss of
function of the entire body (such as antificial lung ventilation [127]), 10 regulate the average blood pressure in artificial
circulation systems and as artificial kidneys for treating cancerous tumors [128, 129], and for controlling heartbeat and
average blood pressure for cardiovascular operations [130] in conjunction with narcotics as well as antiseptics for relaxing
cardiac muscles [130-132].

According to the FZUP design procedure, the application of expert systems in conjunction with fuzzy neural networks
ina control loop is classified as a leamning stage for the purpose of supplementing or testing the correctness of the knowledge
base and likewise for generating control algorithms. Experience in using expert systems in fuzzy controllers and ACSs has
revealed [133~147] additional features in developing the design stages of intelligent controllers and ACSs based on fuzzy
expert systems, which have been partially reflected in models of fuzzy computer-aided design systems {148—150]. We will
discuss one such feature of practical importance in designing fuzzy controllers and ACSs. The models of control systems
have a variable structure and a wide range of structural parameters (nonstationary nonlinear systems), while many control
systems are used in emergencies (for deactivating facilities at nuclear power plants, for firefighting. and for proiecting
structures subjected to intense vibrations) or for developing pathophysiological processes (such as acute respiratory diffi-
culties, eic). Thus, it is necessary (o develop intelligent ACSs for controlling control system under extreme conditions. The
development of fuzzy controllers with active expert systems also includes the problem of the reliability of similar intelligent
ACSs with faults and failures in the control processes and unreliable elements in the system and ACS structures [133]. Such
intelligent ACSs for control systems of variable structure are designed for extreme conditions on the basis of this procedure
and of the principles of constructing hierarchical structures (FZUP-systems) that are intelligent *‘in the large’” 5, 39]. In
this case, the control loop of such control systems include two fuzzy controllers, one of which controls the system operating
under conditions of variable parameters that do not modify the structure of the contral system. The second, which is based
on an active expert system with deep knowledge representation, is designed to control the system under extreme conditions.
Examples of such models have been described in [127, 133]. In this case, the first fuzzy controller 1s classified as intelligent
in the small,”” and the second, as intelligent '*in the large.”” Such an approach is of special interest for developing mobile
systems with vertical climbing robots designed to counter emergency situations, e.g.,to fight fires, toclean up after explosions,
etc. [152]. An example of a fuzzy expert system for assessing the size and dynamics of fire developmeni can be found in
[153].

Here we will consider as an example the features of the use of knowledge bases of expert systems to improve the
dynamic characteristics of traditional controller models, i.e., those that are intelligent **in the small.™

Example 3. In existing technologies for developing fuzzy logic controllers [154-162], special attention is devoted
to defining the qualitative characteristics of the dynamic behavior of the control system using a knowledge base in the form
of production rules, compared to a traditional PID-controller. The considerable advantages of using fuzzy controllers in
this case have been pointed out, where the model of the control system is essentially nonlinear; the descriptions of the
relations have a high degree of uncertainty (weakly structured models), and the model can be reduced Lo a limited number
of production rules etc. [5]. In developing design processes it is interesting o compare the qualitative characieristics of
control systems for three cases when an intelligent controller, a fuzzy controller, or an optimal PID-controller is used in the
control loop. Let us assume that the control system is described by a transfer function of the type & (s) = /(1 + T\5) (I +

i

7.5). Let us consider three cases where a traditional PID-controller with a quality criterion min [ le (1)l ¢r and a PID-controller
o

with an expert system are used. The results of a simulation [138] demonstrating the effectiveness of the intelligent PID-
controller are presented in Fig. 4.

124



172 a
1
J 1 1 1 |
1 2 7 ¥ §F ts
2 I b
it 2 I
1.0
J I
0 I i 1 . 1 | 1 1 i ] | 1 I
T2 3 Y 5 ELs P2 3 4 &8 § 7 8 ts
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Example 4. Let us now consider a linear control system with a delay of the form @ (5} = exp (—15)/(1 + 55). Asin
Example 3. we will specify threc cases when a PID-controller, a fuzzy Pl-controller, and the intelligent controiler from
Example 1 are used in the control loop. Results of the simuiation [139] of the dynamic response of the control system (o a
step input for different delays are presented in Fig, 5. It can be seen from Fig. 5a and b that the effectiveness of the intelligent
controller increases as the delay increases compared to the fuzzy and traditional PID-controllers. Additional simulation
examples can be found in [135].

The results of simulation given in Examples 1-4 demonstrate that intelligent controllers have advanced functional
capabilitics and a greater degree of adaptation and robustness [5, 99, 100]. This procedure is a component part of
computer-aided design systems for designing fuzzy intelligent controllers and ACSs.

4. The Procedural Features of the Development of Models of Logic Controllers That Are Intelligent
“in the Small” (Fuzzy Controilers)

We will discuss certain qualitative features of the procedure for designing fuzzy controllers, using the resulis of
specilic examples. Rigorous mathematical constructions and metheds of analyzing fuzzy controllers are presented
subsequent sections of this series of papers.

The possibility for using a linguistic approximation of a control system in control algorithms has a considerable
advantage over traditional controllers when the model of the control systetn itself is essentially nonlinear or the system
operates in a chaouc environment. The conditions for the existence of nonlinearities in the control system and the process
of overcoming difficulties of analysis by means of fuzzy coniroller models have been demonstrated in many papers [163].
We will give a simple illustrative example where a fuzzy controiler is used effectively (compared to a traditional PID-
controller) in the case of a chaotically organized environment.

Example 5. Consider a model of a fuzzy controller for an automatic airpont door system (Fig. 6a) presented in the
paper *Basic Study of an Automatic Door System Using Fuzzy Inference’” at the Sino-Japanese Symposium on Fuzzy Sets
and Systems (15- 18 October 1990) [164). The door opening-closing procedure (where the doors are the system being
controlled) is executed in a chaotic environment in the {orm of iregular moving traffic (the armival and depariure of visitors).
The following parumeters are measured when the passenger stream crosses section ¢ containing the sensors: the speed of
cach mdavidual in the traffic stream, the present position of the door, the time required to reach and pass through the doors,
anthropometie daty on the individual theight, weight, etc ), and the present distance between moving visitors. The sampling
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Fig. 6. A fuzzy system for controiling automatic door opening and closing: a) overall sysiem configuration; b) structure
of the fuzzy inference unit; ¢} experimental data from measurements of the time lost in walking across each section
L.(i=1,2,...,8): D) raditional method of automatic door conirol; 2) fuzzy logic based control.

lume is 50 ps. These data constituie the input signals for the fuzzy inference unit (see Fig. 6b) containing 301 production
rules i is knowledge base. The output parameters from this unit include the control vaniables for the door opening/closing
speed and initiaton. The figure of merit of ACS operation is the time a visitor has to wait for the door to open. Results of
anexperimental test of the fuzzy controller compared toa traditional sensor control method are given in Fig. 6¢. The excellent
performance of the fuzzy controller under experimental conditions, when a visitor walks quickly or runs across the sections
and the control system successfully performs its function, should be noted. The time a visitor has o wait for the door 10
open 1s reduced on the average by 87% when the fuzzy controller is used. An effective (alternative} approach based on
fuzzy controilers can therefore be offered in place of the traditional stochastic control method in a chaotic environment.
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Fig. 7. Expernimental configuration for testing the stability of an inverted pendulum: /) pendulum; 2) potentiometer:
3) moving frame; 4) motor; 5) power amplifier.

8
0+ I=- z 2.1z ‘ir o u Inverted =

Fuzzy controller -
- / I‘ﬂ.l’? pendulum
y=-8 .
g
0
+ —
a
0.12 u :
0+ Pl-controller I 4 ’ Invented
=1 FFuzzy controller f— a5 i
e K(1+1/Ts) -0n penddlin
-—F .
v §
0 =
+ &
b

Fig. 8. Block diagrams for controlling the stability of an inveried pendulum: a) with fuzzy controller;
b) combined control design (Pl-controller and fuzzy controller).

We will consider one additional feature of the design of fuzzy controllers by solving the well-known problem of the
stability of aninverted pendulum [165-172], which is of independent interest for intelligent human-operator control systems
[173].

Example 6. A model of the inverted pendulum is shown in Fig. 7. It 1s required to hold the unstable pendulum in a
stable position by means of a control force that moves the frame in a horizontal position. It 1s well known in practice that
an mverted pendulum can casily be held in a stable position in the palm by hand movements. This fact led 1o the idea of
employing a fuzzy controlleremploying a total of seven production rules to solve this problem [165]. An analogous approach
wis used 1o solve the problem of the stability of an inverted double pendulum [172]. The equation of motion of an inverted
pendulum under a control force w 1s well known from analytical mechanics and takes the form

(M + m)r + mlcos 86 = —Dr + ml#? sin 6 — Gu, 4.1

ml cos 67 + (6 + mP)0 = —cb + migsin 6,
where we tike M = 0393 kg, m = 0.074 kg, D = 2.847 kg/s, G = 56.29 N/V g = 9.8 m/s". 1 = 0.358 m, o = 0.0095 kgm®,
c=0.00218 kgml/s,
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Fig. 9. Results of a simulation of the stability of an inverted pendulum as shown in Fig. 8a: a) position of the moving
frame; b) speed of the frame; c) angle of the inverted pendulum; d) magnified image of Fig. 9c; e) change in control
signal.

8, rad h? A

0.010 V/
0.005+ ' /ﬁ .
7K

x|—

0.000 7 7 — ’(an*aw)/by -
0 20 40 60 60 ( 77 yy)/by
t,s
é b

Fig. 10. Results of a simulation of the stability of an inverted pendulum in accordance with Fig. 8b: a) angle of the posi-
tion of the inverted pendulum; b) regions of stability in parameter space of the fuzzy controller and a PI-controller.

In model (4.1) we will apply a constraint on the amplitude of the permissible control force u in the form lul £0.12 V,
unlike existing approaches.

A block diagram of the control system for stabilizing an inverted pendulum using a fuzzy controller and a control
constraint 1s shown in Fig. 8a.

Results of a simulation [170] of the dynamic behavior of an inverted pendulum under the imual condition 8 (0) =
0.01 rad are presented in Fig. 9. 1t is clear from Fig. 9¢ and d that the angle of deviation from the position of equilibrium
mcreases with time and the pendulum loses its stable state. A block diagram of acombined control system using a Pl-controller
in conjuncton with a fuzzy controller is given in Fig. 8b. Results of a simulation of the dynamic behavior of an inverted
pendulum with the control configuration shown in Fig. 8d are presented in Fig. 10a. 1t 1s evident from Fig. 10a that by
incorporating the Pl-controller in the structure of the fuzzy control system it is possible to maintain the mverted pendulum
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in a stable position relative to the unstable equilibrium position. In this case, the parameters of the Pl-controller took the
form [170] K = 5.7 = 2.5. Analysis of the conditions of stability of the inverted pendulum can be obtamned from lineanzed
system (4.1) of the form (v = [r, 0. 7, 8]7) v = Av + bu, where

0010 01 = —mlg b ay = —D(s + mP)B,
0001 0| @e=cmlBTi ay=(M+ mymigh™,
A=\0a,a,a,| 2= |b,| %0 =DmB™ a,=—(M+ m)cp~
0 A, a5 a,, b b; = mlGB"; b] == —(c + mp)GB_I;

B=0o(M+m)+ MmP.

-

&

The problem of csumatng the stability of a linearized system with a fuzzy controller (described by the linear gain in the
feedback loop /= [0h,0h,]) reduces to the analysis of a polynomial of the form

5[5J + (Qn i an’llz)sz +(Q, + Ql]hl)s + QJI ]=0. (4.2)
where Q) = — a3y — Ay Q2 = b Oy = Ay — Ay — sy Qr = byl Q5 = — anay, + ayag. It follows from Eq. (4.2) that
the necessary condition of stability is a negative value of the free term Q5 of the form

Dm*Pg —
0, = m’lg — D(s +BTP)(M + m)mlg 0, D=0,

which denotes the presence of narrow boundaries on the region of stability of the fuzzy controller in this case. For the
configuration shown in Fig. 8b the analogous polynomial will have the form [170]

Kb,

84 (Qu+ Quh)s + (Qy + kbh)s + Q) + —

] =0, (4.3)
which will include. 1n addition to the parameters of the fuzzy controller, the parameters of the Pl-controller. Such a con-
figuration has wider limits of stability compared to Fig. 8a. The Limits of stability of the combined system in the parameter
domain (h,, h,) for polynomial (4.3) are shown in Fig. 10b.

The 1dea of the combined use of PI- and P-controllers was also employed in [171] depending on the form of feedback
employed. Thus, 1t is recommended that a PI-controller be used for negative feedback and that a P-controller be used for
positive feedback.

A similar result on the combined use of a fuzzy controller and linear feedback was achieved in [174] in analyzing the
stability of aninverted pendulum which isdriven to a vertical state from the stable position with constraints on the permissible
range of the frame. In this case, the fuzzy controller is used to drive the pendulum from its stable state to the vertical unstable -
position (the fuzzy controller is an intelligent tool for overcoming the essentially nonlinear nonholonomic relations), while
the pendulum is held in a stable vertical position by linear feedback in traditional controller models.

8, rad
§
s z
200
I8
-8

Fig. 11 Results of a simulation of the stability of an inverted pendulum using an adaptive fuzzy controller in the control
loop: 1) output signal (angle of deviation of the pendulum); 2) output control signal of the fuzzy adaptive controller.
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A more extensive analysis [ 175-176] has demonstrated the value ol a iybrid approach 1o the use of a fuzzy controller
in conjuncuon with a PID-controller. On the other hand. il 1s possibie 1o achieve a stable state of the inverted pendulum
without employing a Pl-controller by increasing the complexity of the fuzzy controiler control algorithm by means of
adaptation [157] or by neural network leaming (169, 172]. Results of a simulancen of the stability of an inverted pendulum
with an adaptive fuzzy contoller are presented in Fig, 11, The example given in Fig. 11 suggests the possibility of solving
(he problem of the stability of an inverted pendulum by employing intelligent tools in the form of fuzzy logic production
rules.

Generally, as suggested in [177). it is also necessary Lo introduce two levels: a coordination level (upper level) as the
intelligent level and a lower level (a fuzzy controller or a PID-controller) as an execution level. Hence, in this case we asrive

at the design procedure presented in Fig. 1.

CONCLUSION

This procedure for designing fuzzy models of intelligent controllers and control sysiems leads (o the following
conclusions,

The use of fuzzy models of controilers and, particularly, control systems that are ““intelligent in the large™ can improve
considerably the dynamic characteristics of control systems operating under conditions of uncertainty of input information
or in a chaotic environment. The design of such control systems is a complex problem to the extent that a variety of methods
can be employed to obtain the necessary dynamic charactenistics, including increasing the complexity of the model on the
execution level or incorporating intelligent tools with more extensive capabilities. The procedure presented in this paper
makes if possible to establish the desired relation between the execution and the intelligence levels based on the results of
a simulation, depending on the problem orientation of the routine exccuted, the purposes of the controt action, and the
operaung conditions of the control sysiem.

Simulation, learning, and adaptation by neural networks that make il possible to formulaie a special knowledge base
on the inteiligence level used are the basis of the procedure for designing control systems with different intelligence levels.
This makes it possible to formulate the fundamental structural requirements imposed on the corresponding computer-aided
design systems based on such units as a simulation unit, a leaming and adaplable fuzzy neural network, an approximate
reasoning unit (including fuzzy inference), a knowledge base generator, and a fuzzy generator and interpreter.
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