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SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Introduction

We will describe the situation from computer science viewpoint: how a Quantum Algorithm,
written as a Quantum Circuit, can be automatically translated into the corresponding
Programmable Quantum Gate. This gate is represented as a matrix operator such that, when it
is applied to the vector representation of the quantum register input state, the produced result
is the vector representation of the required register output state (see Fig.1).

Figure 1 : The Gate Approach for Simulation of Quantum Algorithms using Classical Computers

Bases of quantum computation are three operators on quantum coherent states: superposition,
entanglement and interference.
The coherent states are described as those solutions of the corresponding Schrödinger
equation that represent the evolution states with minimum of uncertainty (in Heisenberg
sentence they are those quantum states with “maximum classical properties”). The Hadamard
Transform creates the superposition on classical states, and quantum operators as CNOT
create robust entangled states. Quantum Fast Fourier Transform carries on interference. The
efficient implementations of a number of operations for quantum computation include
controlled phase adjustment of the amplitudes in superposition, permutation, approximation of
transformations and generalizations of the phase adjustments to block matrix transformations.
These operations generalize those used in quantum search algorithms that realized on classical
computer. We demonstrate the application of this approach to the simulation on classical
computers of the Benchmarks as Deutsch’s, Deutsch–Jozsa’s, Simon’s, Shor’s and Grover`s
algorithms.
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SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 1: General Outline of Quantum Algorithms

1. AIM

We discuss in this introductory part the general outline of the quantum algorithms we are
going to deal with.

2. GENERAL STRUCTURE OF QUANTUM ALGORITHMS

The problems solved by the quantum algorithms we will describe can all be so stated:

Input A function f:{0,1}n →{0,1}m

Problem Find a certain property of f

The structure of a quantum algorithm is outlined, with a high level representation, in the
scheme diagram of fig.1.
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Figure 1: Scheme Diagram of Quantum Algorithms

The input of a quantum algorithm is always a function f from binary strings into binary
strings. This function is represented as a map table, defining for every string its image.
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Function f is firstly encoded into a unitary matrix operator UF depending on f properties. In
some sense, this operator calculates f when its input and output strings are encoded into
canonical basis vectors of a Complex Hilbert Space: UF maps the vector code of every string
into the vector code of its image by f.

When the matrix operator UF has been generated, it is embedded into a quantum gate G,  a
unitary matrix whose structure depends on the form of matrix UF and on the problem we want
to solve. The quantum gate is the heart of a quantum algorithm. In every quantum algorithm,
the quantum gate acts on an initial canonical basis vector (we can always choose the same
vector) in order to generate a complex linear combination (let’s call it superposition) of basis
vectors as output. This superposition contains all the information to answer the initial
problem.
After this superposition has been created, measurement takes place in order to extract this
information. In quantum mechanics, measurement is a non-deterministic operation that
produces as output only one of the basis vectors in the entering superposition. The probability
of every basis vector of being the output of measurement depends on its complex coefficient
(probability amplitude) in the entering complex linear combination.
The segmental action of the quantum gate and of measurement constitutes the quantum block.
The quantum block is repeated k times in order to produce a collection of k basis vectors.
Being measurement a non-deterministic operation, these basic vectors won’t be necessarily
identical and each one of them will encode a peace of the information needed to solve the
problem.
The last part of the algorithm consists into the interpretation of the collected basis vectors in
order to get the right answer for the initial problem with a certain probability.

3. ENCODER

The behaviour of the encoder block is described in the detailed scheme diagram of fig.2.
Function f is encoded into matrix UF in three steps.

Step 1

The map table of function f:{0,1}n→{0,1}m is transformed into the map table of the injective
function F:{0,1}n+m→{0,1}n+m such that:

F(x0, .., xn-1, y0, .., ym-1)= (x0, .., xn-1, f(x0, .., xn-1)⊕(y0, .., ym-1))

The need to deal with an injective function comes from the requirement that UF is unitary. A
unitary operator is reversible, so it can’t map 2 different inputs in the same output. Since UF

BOX 1: UNITARY MATRIX UF

A squared matrix UF on the complex field is unitary iff its inverse matrix coincides with
its conjugate transpose:

UF 
-1=UF =

A unitary matrix is always reversible and preserves the norm of vectors.



Part 1 – General Outline of Quantum Algorithms     9

will be the matrix representation of F, F is supposed to be injective. If we directly employed
the matrix representation of function f, we could obtain a non-unitary matrix, since f could be
non-injective. So, injectivity is fulfilled by increasing the number of bits and considering
function F instead of function f. Anyway, function f can always be calculated from F by
putting (y0, .., ym-1)=(0,..,0) in the input string and reading the last m values of the output
string.

Figure 2: The Encoder Block Scheme Diagram

Step 2

Function F map table is transformed into UF map table, following the following constraint:

∀s∈{0,1}n+m : UF[τ(s)]= τ [F(s)]

The code map τ :{0,1}n+m → C 2n+m  (C 2n+m is the target Complex Hilbert Space) is such that:

BOX 2: XOR OPERATOR ⊕

The XOR operator between two binary strings p and q of length m is a string s of length m
such that the i-th digit of s is calculated as the exclusive OR between the i-th digits of  p
and q:

p=(p0, .., pn-1)
q=(q0, .., qn-1)

s = p ⊕ q = ((p0+q0) mod 2, .., (pn-1+qn-1) mod 2))

Encoder1
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Code τ maps bit values into complex vectors of dimension 2 belonging to the canonical basis
of C 2. Besides, using tensor product, τ maps the general state of a binary string of dimension
n into a vector of dimension 2n, reducing this state to the joint state of the n bits composing
the register. Every bit state is transformed into the corresponding 2-dimesional basis vector
and then the string state is mapped into the corresponding 2n-dimesional basis vector by
composing all bit-vectors through tensor product. In this sense tensor product is the vector
counterpart of state conjunction.

Examples: Vector Tensor Products
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Basis vectors are denoted using the ket notation |i>. This notation is taken from Dirac
description of quantum mechanics.

Step 3

UF map table is transformed into UF using the following transformation rule:

BOX 3: VECTOR TENSOR PRODUCT ⊗

The tensor product between two vectors of dimensions h and k is a tensor product of
dimension h⋅k, such that:
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If a component of a complex vector is
interpreted as the probability
amplitude of a system of being in a
given state (indexed by the
component number), the tensor
product between two vectors
describes the joint probability
amplitude of two systems of being in
a joint state.
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[ ] ijUU FijF =⇔= 1

This rule can easily be understood considering vectors |i> and |j> as column vectors.
Belonging these vectors to the canonical basis, UF defines a permutation map of the identity
matrix rows. In general, row |j> is mapped into row |i>.
This rule will be illustrated in detail in part 2, where we face the first example of quantum
algorithm: Deutsch’s algorithm.

4. QUANTUM BLOCK

The heart of the quantum block is the quantum gate, which depends on the properties of
matrix UF. The scheme in fig.3 gives a more detailed description of the quantum block.

Figure 3: Structure of Quantum Block in Fig.1

Matrix operator UF in fig.3 is the output of the encoder block represented in fig.2. Here, it
becomes the input for the quantum block.
This matrix operator is firstly embedded into a more complex gate: the quantum gate G.
Unitary matrix G is applied k times to an initial canonical basis vector |i> of dimension 2n+m.
Every time, the resulting complex superposition G|0..01..1> of basis vectors is measured,

Gate
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producing one basis vector |xi> as result. All the measured basis vectors {|x1>,..,|xk>} are
collected together. This collection is the output of the quantum block.
The “intelligence” of our algorithms is in the ability to build a quantum gate that is able to
extract the information necessary to find the required property of f and to store it into the
output vector collection.
We will discuss in detail the structure of the quantum gate for every quantum algorithm,
observing that it can be described in a general way.

In order to represent quantum gates we are going to employ some special diagrams called
quantum circuits.
An example of quantum circuit is reported in fig.4:

Figure 4: Example of Quantum Circuit

Every rectangle is associated to a matrix 2n×2n, where n is the number of lines entering and
leaving the rectangle. For example, the rectangle marked UF is associated to matrix UF.
Quantum circuits let us give a high-level description of the gate and, using some
transformation rules, we can easily compile them into the corresponding gate-matrix. These
rules are listed in fig.5:

Figure 5.a: Rule 1 − Tensor Product Transformation
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Figure 5.b: Rule 2 − Dot Product Transformation

Figure 5.c: Rule 3 – Identity Transformation

Figure 5.d: Rule 4 – Propagation Rule

Figure 5.e: Rule 5 – Iteration Rule

Figure 5.f: Rule 6 – Input/Output Tensor Rule
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It will be clearer how to use these rules when we afford the first examples of quantum
algorithm.

Example: Matrix Tensor Product
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5. DECODER

The decoder block has the function to interpret the basis vectors collected after the iterated
execution of the quantum block. Decoding these vectors means to retranslate them into binary
strings and interpreting them directly if they already contain the answer to the starting
problem or use them, for instance as coefficients vectors for some equation system, in order to
get the searched solution. We shall not investigate this part in detail since it is a non-
interesting easy classical part.

BOX 4: MATRIX TENSOR PRODUCT ⊗

The tensor product between two matrices Xn×m and Yh×k is a (block) matrix (n⋅h)×(m⋅k)
such that:
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SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 2: Deutsch’s Algorithm

1. AIM

In order to illustrate the general method to synthesise a quantum algorithm and the quantum
gate implementing it, we deal with a very simple pedagogical example: Deutsch’s algorithm.
We shall point out the role of superposition, entanglement and parallel quantum massive
calculation.

2. DEUTSCH’S PROBLEM

A function f:{0,1}→{0,1} is said constant if and only if ∃y∈{0,1}:∀x∈{0,1}: f(x)=y. It is said
balanced if and only if |{x∈{0,1}: f(x)=0}| = |{x∈{0,1}: f(x)=1}|.

Deutsch’s problem is so stated:

Input A balanced or constant function f
Problem Decide if f is constant or balanced

We distinguish 4 possible functions fi:{0,1}→{0,1}. They are defined by the following map
tables:

Constant Functions

Balanced Functions

The set  {fi}i∈{1,2,3,4} is the input set for our algorithm. Every function fi is represented by its
map table.

x f1(x)
0 0
1 0

x f2(x)
0 1
1 1

x f3(x)
0 0
1 1

x f4(x)
0 1
1 0
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3. ENCODER

The encoder block encodes input function f into matrix UF. Suppose the function we are going
to investigate is f=f3. Its map table is the following:

Step 1

Function f is firstly transformed into function F:{0,1}2→{0,1}2 such that

F(x0, y0)= (x0, f(x0)⊕y0)

 In logic representation this means:

.

Therefore, if f=f3, F map table is the following:

Step 2

In this step, the map table of F is transformed into the map table of UF.
The transformation rule is the following:

∀s∈{0,1}2: UF[τ(s)]= τ [F(s)]

x f3(x)
0 0
1 1

y0 F(x0, y0)
0 (x0, f(x0))
1 (x0, ¬f(x0))

BOX 1: NOT OPERATOR ¬

The NOT operator acting on a binary string flips the value of every digit in the string.

p=(p0, .., pn-1)
¬p=((p0+1)mod2, .., (pn-1+1)mod2)

(x0, y0) F(x0, y0)
(0,0) (0,0)
(0,1) (0,1)
(1,0) (1,1)
(1,1) (1,0)
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So, UF map table is:

or, writing basis vectors as column vectors:

.

Step 3

The matrix associated to such a map table is obtained from the identity matrix 4×4 by a
permutation of its rows: the first and the second rows are mapped into themselves, whereas
the third row is mapped into the fourth one and the fourth row into the third one:
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A general way to build UF is to express every vector UF (|s>) as a linear combination of all the
basis vectors.
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v UF v
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BOX 2: TRANSPOSE OPERATOR (..)T

The TRANSPOSE operator acting on a row or column vector transforms the vector into
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The co-ordinates of this combination are all 0, unless for one basis vector corresponding to the
image of |s> by UF :

10010101000011

10110001000010

10010001100001

10010001000100

+++=

+++=

+++=

+++=

F

F

F

F

U

U

U

U

We calculate [UF]ij as the co-ordinate of vector UF (|j>) with respect to vector |i>, where i and
j are binary sequences. This means:

[ ] ijUU FijF =⇔= 1

Value [UF]ij  is called the probability amplitude of  |j> of being mapped into |i> by UF.
The probability amplitude of |00> of being mapped into |00> is, for instance, 1, since
UF|00>=1|00>, whereas its probability amplitude of being mapped into |01> is 0, since
UF|00>=0|01>.
Using this technique, the following unitary matrix is built:

UF |00> |01> |10> |11>
|00> 1 0 0 0
|01> 0 1 0 0
|10> 0 0 0 1
|11> 0 0 1 0

5. QUANTUM BLOCK

The encoder block has generated matrix UF. This matrix is now embedded into the quantum
gate that will act on the input vector |00>. We describe this gate using a quantum circuit.

|0>

H H

H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

bit

bit

Figure 1: Deutsch’s Quantum Gate – Circuit Representation

Every thin rectangle represents a classical matrix operator n×n, where n is the number of lines
entering and leaving the rectangle. A matrix operator is said classical, when it maps every
basis vector into another basis vector. For example, operator UF is classical. A thick rectangle
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stands for a non-classical matrix operator. A non-classical matrix operator maps at least one
basis vector into a superposition of basis vectors.

Examples: Classical and Non-Classical Matrix operators

Classical Matrix Operator UF Non-Classical Matrix Operator H

We want now to compile the circuit above into the corresponding computable gate. The first
passage consists into completing the circuit making some operators explicit. Consider, for
instance, step 1. The second line is in this step empty. This means that the second entering
basis vector is left unchanged. We say that on this vector acts the identity matrix operator and
we complete the circuit. This is rule 3 described in Part 1.

|0>

H H

H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

bit

bitI

Figure 2: Deutsch’s Quantum Gate – Second Circuit Representation

The identity matrix operator is classical and it is so defined:

I |0> |1>
|0> 1 0
|1> 0 1

At this point we should build a matrix operator corresponding to every step whose action
corresponds to the concurrent action of the matrix operators acting on parallel lines. We use
rules 1 and 6 obtaining the quantum circuit of fig.3.
Finally, we build a unique matrix operator that is equivalent to the sequential application of
the operators in step 1, step 2 and step 3. This is operator composition and it is obtained with
the dot product among matrices in the reverse order of application, as rule 2 states. Applying
rule 2 to the circuit, we obtain the quantum circuit of fig.4,  namely the programmable gate
implementing Deutsch’s algorithm.
Let’s compute this gate. Firstly, we calculate (H⊗I). The output matrix is 4×4. We label each
column and row with the corresponding basis vector. We calculate the amplitude probability

UF |00> |01> |10> |11>
|00> 1 0 0 0
|01> 0 1 0 0
|10> 0 0 0 1
|11> 0 0 1 0

H |0> |1>
|0> 1/21/2 1/21/2

|1> 1/21/2 -1/21/2
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for each basis vector of being mapped into another basis vector using H and I. Take for
instance vector |00>: its probability amplitude of being transformed into |01> is the product
between the probability amplitude of |0> of being mapped into |0> by H and the probability
amplitude of |0> of being transformed into |1> by I. This is tensor product.

|00> H⊗I H⊗HUF

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

bit

Figure 3: Deutsch’s Quantum Gate – Third Circuit Representation

|00> G=(H⊗H)⋅UF⋅(H⊗I)

INPUT STEP OUTPUT

G |00>

Figure 4: Deutsch’s Quantum Gate – Final Representation

Therefore, being:

we can automatically calculate H⊗I and H⊗H:

H⊗I |00> |01> |10> |11>
|00> 1/21/2 0 1/21/2 0
|01> 0 1/21/2 0 1/21/2

|10> 1/21/2 0 -1/21/2 0
|11> 0 1/21/2 0 -1/21/2

H |0> |1>
|0> 1/21/2 1/21/2

|1> 1/21/2 -1/21/2

I |0> |1>
|0> 1 0
|1> 0 1
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H⊗H |00> |01> |10> |11>
|00> 1/2 1/2 1/2 1/2
|01> 1/2 -1/2 1/2 -1/2
|10> 1/2 1/2 -1/2 -1/2
|11> 1/2 -1/2 -1/2 1/2

We rewrite UF  when f=f3:

UF3 |00> |01> |10> |11>
|00> 1 0 0 0
|01> 0 1 0 0
|10> 0 0 0 1
|11> 0 0 1 0

The final programmable gate G3=(H⊗H)⋅(UF3⋅(H⊗I)) is so obtained:

UF3⋅(H⊗I) |00> |01> |10> |11>
|00> 1/21/2 0 1/21/2 0
|01> 0 1/21/2 0 1/21/2

|10> 0 1/21/2 0 -1/21/2

|11> 1/21/2 0 -1/21/2 0

G3 |00> |01> |10> |11>
|00> 1/21/2 1/21/2 0 0
|01> 0 0 1/21/2 -1/21/2

|10> 0 0 1/21/2 1/21/2

|11> 1/21/2 -1/21/2 0 0

Let’s calculate the programmable gates for the other possible input functions. Here are the
map tables.

x f1(x)
0 0
1 0

(x0, y0) F1(x0, y0)
(0,0) (0,0)
(0,1) (0,1)
(1,0) (1,0)
(1,1) (1,1)

x f2(x)
0 1
1 1

(x0, y0) F2(x0, y0)
(0,0) (0,1)
(0,1) (0,0)
(1,0) (1,1)
(1,1) (1,0)
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From every  table, it is easy to calculate the matrix operator:

Different UFi (i=1,2,4) generate different programmable gates Gi=(H⊗H)⋅UFi⋅(H⊗I):

G1 |00> |01> |10> |11>
|00> 1/21/2 1/21/2 0 0
|01> 1/21/2 -1/21/2 0 0
|10> 0 0 1/21/2 1/21/2

|11> 0 0 1/21/2 -1/21/2

G2 |00> |01> |10> |11>
|00> 1/21/2 1/21/2 0 0
|01> -1/21/2 1/21/2 0 0
|10> 0 0 1/21/2 1/21/2

x f4(x)
0 1
1 0

(x0, y0) F4(x0, y0)
(0,0) (0,1)
(0,1) (0,0)
(1,0) (1,0)
(1,1) (1,1)

|x0 y0> UF1 |x0 y0>
|00> |00>
|01> |01>
|10> |10>
|11> |11>

|x0 y0> UF2 |x0 y0>
|00> |01>
|01> |00>
|10> |11>
|11> |10>

(x0, y0) UF4 |x0 y0>
|00> |01>
|01> |00>
|10> |10>
|11> |11>

UF1 |00> |01> |10> |11>
|00> 1 0 0 0
|01> 0 1 0 0
|10> 0 0 1 0
|11> 0 0 0 1

UF2 |00> |01> |10> |11>
|00> 0 1 0 0
|01> 1 0 0 0
|10> 0 0 0 1
|11> 0 0 1 0

UF4 |00> |01> |10> |11>
|00> 0 1 0 0
|01> 1 0 0 0
|10> 0 0 1 0
|11> 0 0 0 1
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|11> 0 0 -1/21/2 1/21/2

G4 |00> |01> |10> |11>
|00> 1/21/2 1/21/2 0 0
|01> 0 0 -1/21/2 1/21/2

|10> 0 0 1/21/2 1/21/2

|11> -1/21/2 1/21/2 0 0

Finally, different programmable gates, generate different superposition states:

G1|00> = 1/21/2 |00> + 1/21/2 |01>
G2|00> = 1/21/2 |00> − 1/21/2 |01>
G3|00> = 1/21/2 |00> + 1/21/2 |11>
G4|00> = 1/21/2 |00> − 1/21/2 |11>

Observe that G1 |00> and G2 |00> can be written as the tensor products of two simpler vectors:

G1|00> = 1/21/2 |0> ⊗ ( |0> + |1> )
G2|00> = 1/21/2 |0> ⊗ ( |0> − |1> )

This is not possible for G3|00> and G4 |00>. We say that these two vectors constitute two
entangled states.

.

When the quantum gate has generated the output vector, which is a linear complex
superposition of basis vectors, measurement takes place.
We assume that measurement is a non-deterministic operation whose input is the linear
superposition of basis vectors and whose output is only one of these basis vectors. The
probability of a basis vector of being the result of measurement is given by the squared
modulus of its complex co-ordinate in the starting superposition.
This description of measurement is taken from quantum mechanics and it constitutes the main
constraint on the access one has to the results of our quantum gate. The non-deterministic
evolution of a quantum system by measurement constitutes the true qualitative difference

BOX 3: ENTANGLED STATES

A vector v of dimension 2n is said to represent an entangled state if and only if it can’t
be written as the tensor product of n vector of dimension 2. Mathematically, the
entanglement condition is so written:

nn vvvvv ⊗⊗=¬∃ ...:,..., 11
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between a quantum computation and a simple parallel computation. This is the price we pay
to Nature.

When we apply measurement to the superposition of basis vectors resulting from one of our 4
gates, we obtain:

Result of MeasurementSuperposition of Basis Vectors
before Measurement Vector Probability

G1|00>=1/√2 |00> + 1/√2 |01> |00>
|01>

||1/√2||2=0.5
||1/√2||2=0.5

G2|00>=1/√2 |00> − 1/√2 |01> |00>
|01>

||1/√2||2=0.5
||1/√2||2=0.5

G3|00>=1/√2 |00> + 1/√2 |11> |00>
|11>

||1/√2||2=0.5
||1/√2||2=0.5

G4|00>=1/√2 |00> − 1/√2 |11> |00>
|11>

||1/√2||2=0.5
||1/√2||2=0.5

With measurement, the quantum block ends. In Deutsch’s algorithm the quantum block is
repeated only one time, so only one resulting basis vector is collected.

6. DECODER

When the final basis vector has been produced, we must interpret the information it carries in
order to establish if f is constant or balanced.
If the resulting vector is |00> nothing can be said about which function was encoded in UF.
But if the result is |01> or |11>, we know that the function was f1 or f2 in the first case, f3 or f4

BOX 4: QUANTUM MEASUREMENT

In quantum mechanics measurement is a non-deterministic operator. Writing a vector  v
as the complex linear combination of n basis vector vi (i=1,…,n), the probability to
observe vi   when v is measured is given by the squared modulus of the complex co-
ordinate of vi in v.

Measurement

Basis vector Probability
v1 ||α1||2

v1 ||α2||2

… …
vn ||αn||2

nn vvvv ααα +++= ...2211
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in the second. In fact only gates G1 and G2 may produce a vector such that, when it is
measured, basis vector |01> has a non-null probability of being observed. Similarly, only
gates G3 and G4 may produce a superposition of basis vectors where vector |11> has non-null
probability amplitude. Since f1 and f2 are constant, whereas f3 and f4 are balanced, the resulting
vector is easily decoded in order to answer Deutsch’s problem:

Resulting Vector
after Measurement

Answer

|00> Nothing can be said

|01> f is constant

|11> f is balanced



SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 3: Deutsch-Jozsa’s Algorithm

1. AIM

The aim of this part is to show that Deutsch-Jozsa’s algorithm is based on the special form of
its quantum gate. This gate is implemented according to the technique developed in Part 1.
Here, we stress the importance of the structure of matrix operator UF.

2. DEUTSCH-JOZSA’S PROBLEM

Deutsch-Jozsa’s algorithm is so stated:

Input A constant or balanced function f:{0,1}n →{0,1}
Problem Decide if f is constant or balanced

This problem is very similar to Deutsch’s problem, but it has been generalised to n>1.

3. ENCODER

We firstly deal with some special functions with n=2. This should help the reader to
understand the main ideas of this algorithm. Then we discuss the general case with n=2 and
finally we encode a balanced or constant function in the more general situation n>0.

A. Encoding a constant function with value 1

Let’s consider the case:

{ } ( ) 1:1,0

2

=∈∀

=

xfx

n
n

In this case  f  map table is so defined:

The encoder block takes f map table as input and encodes it into matrix operator UF, which
acts inside of a complex Hilbert space.

x f(x)
00 1
01 1
10 1
11 1



28    Simulation of Quantum Algorithms on Classical Computers

Step 1
Function f is encoded into the injective function F, built according to the following statement:

{ } { } ( ) ( )( )01010010
11 ,,,,,:1,01,0: yxxfxxyxxFF nn ⊕=→ ++

Then F map table is:

Step 2
Let’s now encode F into UF map table using the rule:

∀t∈{0,1}n+1: UF [τ(t)]= τ[F(t)]

where τ is the code map defined in Part 1. This means:

Here, we used ket notation (see Part 1) to denote basis vectors.

Step 3
Starting from the map table of UF, we calculate the corresponding matrix operator.
This matrix is obtained using the rule:

[ ] ijUU FijF =⇔= 1

(x0, x1, y0) F(x0, x1, y0)
000 001
010 011
100 101
110 111
001 000
011 010
101 100
111 110

|x0 x1 y0> UF |x0 x1 y0>
|000> |001>
|010> |011>
|100> |101>
|110> |111>
|001> |000>
|011> |010>
|101> |100>
|111> |110>
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So, UF is the following matrix:

UF |000> |001> |010> |011> |100> |101> |110> |111>
|000> 0 1 0 0 0 0 0 0
|001> 1 0 0 0 0 0 0 0
|010> 0 0 0 1 0 0 0 0
|011> 0 0 1 0 0 0 0 0
|100> 0 0 0 0 0 1 0 0
|101> 0 0 0 0 1 0 0 0
|110> 0 0 0 0 0 0 0 1
|111> 0 0 0 0 0 0 1 0

Using matrix tensor product, UF can be written as:

CIIU F ⊗⊗=

where ⊗ is the tensor product, I is the identity matrix of order 2 and C is the NOT-matrix so
defined:









=

01
10

C

Matrix C flips a basis vector: in fact it transforms vector |0> into |1> and |1> into |0>.
If matrix UF is applied to the tensor product of three vectors of dimension 2, the resulting
vector is the tensor product of the three vectors obtained applying matrix I to the first two
input vectors and matrix C to the third.

.

The structure of UF is such that the first two vectors in the input tensor product are preserved
(action of I), whereas the third is flipped (action of C). We can easily verify that this action
corresponds to the constraints stated by UF map table.

BOX 1: TENSOR PRODUCT AND ENTANGLEMENT

Given m vectors v1,.., vm of dimension 2d1,.., 2dm and m matrix operators M1,.., Mm of
order 2d1×2d1,.., 2dm ×2dm the following property holds:

( ) ( ) nmnm vMvMvvMM ⋅⊗⊗⋅=⊗⊗⋅⊗⊗ ....... 1111

This means that, if a matrix operator can be written as the tensor product of m smaller
matrix operator, the evolutions of the m vectors the operator is applied to are
independent, namely no correlation is present among this vector. An important corollary
is that if the initial state was not entangled, also the final state is not entangled.
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B. Encoding a constant function with value 0

Let’s now consider the case:

{ } ( ) 0:1,0

2

=∈∀

=

xfx

n
n

In this case f  map table is so defined:

Step 1

F map table is:

Step 2

F map table is encoded into UF map table:

Step 3

It is very easy to transform this map table into a matrix. In fact, we can observe that every
vector is preserved.

x f(x)
00 0
01 0
10 0
11 0

(x0, x1, y0) F(x0, x1, y0)
000 000
010 010
100 100
110 110
001 001
011 011
101 101
111 111

|x0 x1 y0> UF |x0 x1 y0>
|000> |000>
|010> |010>
|100> |100>
|110> |110>
|001> |001>
|011> |011>
|101> |101>
|111> |111>
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Therefore the corresponding matrix is the identity matrix of order 23.

UF |000> |001> |010> |011> |100> |101> |110> |111>
|000> 1 0 0 0 0 0 0 0
|001> 0 1 0 0 0 0 0 0
|010> 0 0 1 0 0 0 0 0
|011> 0 0 0 1 0 0 0 0
|100> 0 0 0 0 1 0 0 0
|101> 0 0 0 0 0 1 0 0
|110> 0 0 0 0 0 0 1 0
|111> 0 0 0 0 0 0 0 1

Using matrix tensor product, this matrix can be written as:

IIIU F ⊗⊗=

The structure of UF is such that all basis vectors of dimension 2 in the input tensor product
evolve independently. No vector controls any other vector.

C. Encoding a balanced function

Consider now the balanced function:

( ) { } ( ) nn
n

n xxxxfxx

n

⊕⊕=∈∀

=

..,..,:1,0,..,

2

111

In this case f map table is the following:

Step 1

The following map table calculated in the usual way represents the injective function F
(where f is encoded into):

x f(x)
00 0
01 1
10 1
11 0

(x0, x1, y0) F(x0, x1, y0)
000 000
010 011
100 101
110 110

(x0, x1, y0) F(x0, x1, y0)
001 001
011 010
101 100
111 111
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Step 2

Let’s now encode F into UF map table:

Step 3

The matrix corresponding to UF is:

UF |000> |001> |010> |011> |100> |101> |110> |111>
|000> 1 0 0 0 0 0 0 0
|001> 0 1 0 0 0 0 0 0
|010> 0 0 0 1 0 0 0 0
|011> 0 0 1 0 0 0 0 0
|100> 0 0 0 0 0 1 0 0
|101> 0 0 0 0 1 0 0 0
|110> 0 0 0 0 0 0 1 0
|111> 0 0 0 0 0 0 0 1

This matrix can’t be written as the tensor product of smaller matrices. In fact, if we write it as
a block matrix we obtain:

UF |00> |01> |10> |11>
|00> I 0 0 0
|01> 0 C 0 0
|10> 0 0 C 0
|11> 0 0 0 I

This means that the matrix operator acting on the third vector in the input tensor product
depends on the values of the first two vectors. If these vectors are |0> and |0>, for instance, the
operator acting on the third vector is the identity matrix, if the first two vectors are |0> and |1>
then the evolution of the third is determined by matrix C.

|x0 x1 y0> UF |x0 x1 y0>
|000> |000>
|010> |011>
|100> |101>
|110> |110>
|001> |001>
|011> |010>
|101> |100>
|111> |111>
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We say that this operator creates entanglement, namely correlation among the vectors in the
tensor product.

D. General case with n=2

Consider now a general function with n=2.
In this general case f map table is the following:

with fi∈{0,1}, i=00,01,10,11. If f is constant then ∃y∈{0,1}∀x∈{0,1}2 : f(x)=y. If f is balanced
then |{fi: fi = 0}|=|{fi: fi = 1}|

Step 1

Injective function F (where f is encoded) is represented by the following map table calculated
in the usual way:

Step 2

Let’s now encode F into UF map table:

x f(x)
00 f00

01 f01

10 f10

11 f11

(x0, x1, y0) F(x0, x1, y0)
000 0 0 f00

010 0 1 f01

100 1 0 f10

110 1 1 f11

001 0 0 ¬ f00

011 0 1 ¬ f01

101 1 0 ¬ f10

111 1 1 ¬ f11

|x0 x1 y0> UF |x0 x1 y0>
|000> |0 0 f00>
|010> |0 1 f01>
|100> |1 0 f10>
|110> |1 1 f11>
|001> |0 0 ¬ f00>
|011> |0 1 ¬ f01>
|101> |1 0 ¬ f10>
|111> |1 1 ¬ f11>
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Step 3

The matrix corresponding to UF  can be written as a block matrix with the following general
form:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi=I if fi=0 and Mi=C if fi=1, i=00,01,10,11. The structure of this matrix is such that,
when the first two vectors are mapped into some other vectors, the null operator is applied to
the third vector, generating a null probability amplitude for this transition. This means that the
first two vectors are always left unchanged. On the contrary, operators Mi∈{I, C} and they are
applied to the third vector when the first two are mapped into themselves. If all Mi coincide,
operator UF encodes a constant function. Otherwise it encodes a non-constant function. If
|{Mi: Mi = I}|=|{Mi: Mi = C}| then f is balanced.

E. General case

Consider now the general case n>0. Input function f map table is the following:

with fi∈{0,1}, i∈{0,1}n. If f is constant then ∃y∈{0,1}∀x∈{0,1}n : f(x)=y. If f is balanced then
|{fi: fi = 0}|=|{fi: fi = 1}|.

Step 1

The map table of the corresponding injective function F is:

x∈{0,1}n f(x)
0..0 f0..0

0..1 f0..1

… …
1..1 f1..1

x∈{0,1}n+1 F(x)
0..00 0..0 f0..0

… …
1..10 1..1 f1..1

0..01 0..0 ¬ f0..0

… …
1..11 1..1 ¬ f1..1
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Step 2

Let’s now encode F into UF map table:

Step 3

The matrix corresponding to UF can be written as a block matrix with the following general
form:

UF |0..0> |0..1> … |1..1>
|0..0> M0..0 0 0 0
|0..1> 0 M0..1 0 0

… … … … …
|1..1> 0 0 0 M1..1

where Mi=I if fi=0 and Mi=C if fi=1, i∈{0,1}n.
This matrix leaves the first n vectors unchanged and applies operator Mi∈{I, C} to the last
vector.
If all Mi coincide with I or C, the matrix encodes a constant function and it can be written as nI
⊗I or nI⊗C. In this case no entanglement is generated. Otherwise, if the condition |{Mi: Mi =
I}|=|{Mi: Mi = C}| is fulfilled,  then f is balanced and the operator creates correlation among
vectors.

.

|x> UF |x>
|0..00> |0..0 f0..0>

… …
|1..10> |1..1 f1..1>
|0..01> |0..0 ¬ f0..0>

… …
|1..11> |1..1 ¬ f1..1>

BOX 2: MATRIX TENSOR AND DOT POWER

Given a matrix M we denote its k-power according to tensor product as: :

( )timeskMMMk ⊗⊗= ..

On the contrary k-power according to dot product is denoted as usually:

( )timeskMMM k ⋅⋅= ..
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4. QUANTUM BLOCK

Matrix UF, the output of the encoder, is now embedded into the quantum gate of Deutsch-
Jozsa’s algorithm. As we did for Deutsch’s algorithm, we describe this gate using a quantum
circuit:

|1>

H H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H

H|0> H bit

...
...

n

bit

bit

Figure 1: Circuit of Deutsch-Jozsa’s Quantum Gate – First Representation

Using rule 3 (Part 1), we compile the previous circuit into the following:

|1>

H H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H

H|0> H
...

...
n

I

bit

bit

bit

Figure 2: Circuit of Deutsch-Jozsa’s Quantum Gate – Second Representation

Let’s consider operator UF in the case of constant and balanced functions. The structure of this
operator strongly influences the structure of the whole gate. We shall analyse this structure in
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the case f is 1 everywhere, f is 0 everywhere and in the general case with n=2. Finally, we
propose the general form for our gate with n>0.

A. Constant function with value 1

If f is constant and its value is 1, matrix operator UF can be written as nI⊗C. This means, as it
is stated by rule 1 in Part 1, that UF can be decomposed into n+1 smaller operators acting
concurrently on the n+1 vectors of dimension 2 in the input tensor product.
The resulting circuit representation is reported in fig.3:

|1>

H H

I

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H

H|0> H
...

...
n

I

I

C

bit

bit

bit

Figure 3: Constant Function with Value 1 – First Circuit

Let’s now use rule number 2, finding the sub-gate acting on every vector of dimension 2 in
input:

|1>

|0>

INPUT STEP OUTPUT

H⋅I⋅H|0>

...
n

H⋅I⋅H

I⋅C⋅H

bit

bit

bit

Figure 4 Constant Function with Value 1 – Second Circuit
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Let’s observe that every vector in input evolves independently from other vectors. This is
because operator UF doesn’t create any correlation. So, the evolution of every input vector can
be analysed separately.
This circuit can be written in a simpler way, observing that M⋅I=M:

|1>

|0>

INPUT STEP OUTPUT

H2|0>

...
n

H2

C⋅H

bit

bit

bit

Figure 5: Constant Function with Value 1 – Third Circuit

We can easily show that:

H2=I

Therefore the circuit is rewritten in this way:

|1>

|0>

INPUT STEP OUTPUT

I|0>

...
n

I

C⋅H

bit

bit

bit

Figure 6: Constant Function with Value 1 – Fourth Circuit
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Let’s consider now the effect of the operators acting on every vector:

2

10
100

−
−=⋅= HCI

Using these results in rule number 4 of Part 1 and applying rule number 3, we get the
following circuit representation:

|1>

|0>

INPUT STEP OUTPUT

|0>

|0> |0>

...n

C⋅H
|0> − |1>

21/2

Figure 7: Constant Function with Value 1 – Fifth Circuit

You see that, if f is constant with value 1, the first n vectors are preserved.

B. Constant function with value 0

A similar analysis can be repeated for a constant function with value 0. In this situation UF

can be written as nI⊗I and the final circuit is:

|1>

|0>

INPUT STEP OUTPUT

|0>

|0> |0>

...n

H
|0> − |1>

21/2

Figure 8: Constant Function with Value 0 – Final Circuit
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In this case too, the first n input vectors are preserved. So, their output values after the
quantum gate has acted are still |0>.

C. General case (n=2)

The gate implementing Deutsch-Jozsa’s algorithm in the general case is obtained operating on
the circuit of fig.2 with rules 1 and 2 defined in Part 1.
This is the circuit evolution:

|1>

UF
|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

n+1H

|0>

...n
nH⊗I

bit

bit

bit

Figure 9: Evolution of the Circuit in fig.2

|1>

|0>

INPUT STEP OUTPUT

(nH ⊗I) ⋅UF ⋅(
 n+1H)

|0>

...
n

bit

bit

bit

Figure 10: Deutsch-Jozsa’s Quantum Gate

If n=2, UF has the following form:
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UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi∈{I, C}, i=00,01,10,11.
Let’s calculate the quantum gate G=(2H ⊗I) ⋅UF ⋅( 2+1H) in this case:

3H |00> |01> |10> |11>
|00> H/2 H/2 H/2 H/2
|01> H/2 -H/2 H/2 -H/2
|10> H/2 H/2 -H/2 -H/2
|11> H/2 -H/2 -H/2 H/2

2H⊗I |00> |01> |10> |11>
|00> I/2 I/2 I/2 I/2
|01> I/2 -I/2 I/2 -I/2
|10> I/2 I/2 -I/2 -I/2
|11> I/2 -I/2 -I/2 I/2

UF ⋅ 3H |00> |01> |10> |11>
|00> M00H/2 M00H/2 M00H/2 M00H/2
|01> M01H/2 -M01H/2 M01H/2 -M01H/2
|10> M10H/2 M10H/2 - M10H/2 - M10H/2
|11> M11H/2 - M11H/2 - M11H/2 M11H/2

G |00> |01> |10> |11>
|00> (M00+M01+M10+M11)H/4 (M00-M01+M10-M11)H/4 (M00+M01-M10-M11)H/4 (M00-M01-M10+M11)H/4
|01> (M00-M01+M10-M11)H/4 (M00+M01+M10+M11)H/4 (M00-M01-M10+M11)H/4 (M00+M01-M10-M11)H/4
|10> (M00+M01-M10-M11)H/4 (M00-M01-M10+M11)H/4 (M00+M01+M10+M11)H/4 (M00-M01+M10-M11)H/4
|11> (M00-M01-M10+M11)H/4 (M00+M01-M10-M11)H/4 (M00-M01+M10-M11)H/4 (M00+M01+M10+M11)H/4

Now, consider the application of G to vector |001>:

( ) ( )

( ) ( ) 111
4
1

110
4
1

101
4
1

100
4
1

001

1110010011100100

1110010011100100

HMMMMHMMMM

HMMMMHMMMMG

+−−⊗+−−+⊗

+−+−⊗++++⊗=
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Consider the operator (M00+M01+M10+M11)H under the hypotheses of balanced functions
Mi∈{I, C}and |{Mi: Mi = I}|=|{Mi: Mi = C}|. Then:

M00+M01+M10+M11 |0> |1>
|0> 2 2
|1> 2 2

(M00+M01+M10+M11)H/4 |0> |1>
|0> 1/21/2 0
|1> 1/21/2 0

Thus:

( ) 01
4
1

11100100 =+++ HMMMM

This means that the probability amplitude of vector |001> of being mapped into a vector |000>
or |001> is null.
Consider now the operators:

(M00+M01+M10+M11)H
(M00−M01+M10−M11)H
(M00+M01−M10−M11)H
(M00−M01−M10+M11)H

under the hypotheses ∀i: Mi=I, which holds for constant functions with values 0:

M00+M01+M10+M11 |0> |1>
|0> 4 0
|1> 0 4

(M00+M01+M10+M11)H/4 |0> |1>
|0> 1/21/2 1/21/2

|1> 1/21/2 -1/21/2

M00−M01+M10−M11 |0> |1>
|0> 0 0
|1> 0 0

M00+M01−M10−M11 |0> |1>
|0> 0 0
|1> 0 0

M00−M01−M10+M11 |0> |1>
|0> 0 0
|1> 0 0
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Using these calculations, we obtain the following results:

( )

( )

( ) 01
4
1

01
4
1

01
4
1

11100100

11100100

11100100

=+−−

=−−+

=−+−

HMMMM

HMMMM

HMMMM

This means that the probability amplitude of vector |001> of being mapped into a
superposition of vectors |010>, |011>, |100>, |101>, |110>, |111> is null. The only possible
output is a superposition of vectors |000> and |001>, as we showed before using circuits. A
similar analysis can be developed under the hypotheses ∀i: Mi=C.

It is useful to outline the evolution of the probability amplitudes of every basis vector while
operator 3H, UF and 2H ⊗I are applied in sequence, for instance when f has constant value 1.
This is done in fig.11:

Figure 11.a: Input Probability Amplitudes

Figure 11.b: Probability Amplitudes after Step 1 (Fig. 1)

-1

-0.5

0

0.5

1

|000> |001> |010> |011> |100> |101> |110> |111>

-1

-0.5

0

0.5

1

|000> |001> |010> |011> |100> |101> |110> |111>
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Figure 11.c: Probability Amplitudes after Step 2 (Fig. 1)

Figure 11.d: Probability Amplitudes after Step 3 (Fig. 1)

Operator 3H puts the initial canonical basis vector |001> into a superposition of all basis
vectors with the same (real) coefficients in modulus, but with positive sign if the last vector is
|0>, negative otherwise.

Operator UF in this case doesn’t create correlation: it flips the third vector independently from
the values of the first two vectors.

Finally, 2H⊗I produces interference: for every basis vector |x0x1y0> it calculates its output
probability amplitude α’x0x1y0 as the summation of the probability amplitudes of all basis
vectors in the form |x0x1y0> in the input superposition, all with the same sign if |x0x1>=|00>,
otherwise changing the sign of exactly the middle of the probability amplitudes.
Since, in this case, the vectors in the form |x0x10> have the same (negative real) probability
amplitude and vectors in the form |x0x11> have the same (positive real) probability amplitude,
when |x0x1>=|00>, probability amplitudes interfere positively. Otherwise the terms in the
summation interfere destructively annihilating the result.

D. General case (n>0)

In the general case n>0, UF has the following form:

-1

-0.5

0

0.5

1

|000> |001> |010> |011> |100> |101> |110> |111>

-1

-0.5

0

0.5

1

|000> |001> |010> |011> |100> |101> |110> |111>
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UF |0..0> |0..1> … |1..1>
|0..0> M0..0 0 0 0
|0..1> 0 M0..1 0 0

… … … … …
|1..1> 0 0 0 M1..1

where Mi∈{I, C}, i∈{0,1}n.
Let’s calculate the quantum gate G=(nH ⊗I) ⋅UF ⋅( n+1H):

n+1H |0..0> … |j> … |1..1>
|0..0> H/2n/2 … H/2n/2 … H/2n/2

… … … … … …
|i> H/2n/2 … (-1)i⋅jH/2n/2 … (-1)i ⋅ (1..1)H/2n/2

… … … … … …
|11> H/2n/2 … (-1)(1..1) ⋅ jH/2n/2 … (-1)(1..1) ⋅(1..1)H/2n/2

Here we employed binary string operator ⋅, which represents the parity of the AND bit per bit
between two strings.

.

We shall prove that matrix n+1H really has the described form. We show that:

The proof is by induction:

• n=1:

BOX 3: PARITY OF BIT PER BIT AND ⋅

Given two binary strings x and y of length n, we define:

nn yxyxyxyx ⋅⊕⊕⋅⊕⋅=⋅ ..2211

The symbol ⋅ used between two bits is interpreted as the logical AND operator.
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• n>1:

Matrix n+1H is obtained from nH by tensor product. Similarly, matrix nH⊗I is calculated:

nH⊗I |0..0> … |j> … |1..1>
|0..0> I/2n/2 … I/2n/2 … I/2n/2

… … … … … …
|i> I/2n/2 … (-1)i⋅jI/2n/2 … (-1)i ⋅ (1..1)I/2n/2

… … … … … …
|11> I/2n/2 … (-1)(1..1) ⋅jI/2n/2 … (-1)(1..1) ⋅(1..1)I/2n/2

UF ⋅ n+1H |0..0> … |j> … |1..1>
|0..0> M0..0H/2n/2 … M0..0H/2n/2 … M0..0H/2n/2

… … … … … …
|i> MiH /2n/2 … (-1)i⋅j MiH/2n/2 … (-1)i ⋅ (1..1) MiH/2n/2

… … … … … …
|1..1> M1..1H/2n/2 … (-1)(1..1) ⋅j M1..1H/2n/2 … (-1)(1..1) ⋅(1..1) M1..1H/2n/2

We calculated only the first column of gate G since this operator is applied exclusively to
input vector |0..01> and so only the first column is involved.

G |0..0> …
|0..0> (M0..0+..+Mi+..+M1..1)H/2n …

… … …

|i> ( Σ j∈{0,1}n (-1)i⋅jMj )H/2n …

… … …

|1..1> ( Σ  j∈{0,1}n (-1)(1..1) ⋅jMj )H/2n …

Now consider the case of f constant. We saw that this means that all matrices Mi are identical.

[ ] [ ] ( )
( )

( )( ) ( )

[ ] [ ] ( )
( )

( )( ) ( )

[ ] [ ] ( )
( )

( )( ) ( )

[ ] [ ] ( )
( )

( )( ) ( )

2/

11

2/12/1,
1

2/11,1

2/

01

2/12/1,
1

2/10,1

2/

10

2/12/1,
1

2/11,0

2/

00

2/12/1,
1

2/10,0

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

n

ji

n

ji

ji
n

ji
n

n

ji

n

ji

ji
n

ji
n

n

ji

n

ji

ji
n

ji
n

n

ji

n

ji

ji
n

ji
n

HH

HH

HH

HH

⋅

−

⋅
−

⋅

−

⋅
−

⋅

−

⋅
−

⋅

−

⋅
−

−
=

−
−=−=

−
=

−
==

−
=

−
==

−
=

−
==



Part 3 – Deutsch-Jozsa’s Algorithm    47

This implies:

( )( ) 01
2
1

=−∑ ⋅ HM
j j

ji

n

since in this summation the number of +1 equals the number of –1. Therefore, the input vector
|0..01> is mapped into a superposition of vectors |0..00> and |0..01> as we showed using
circuits.
If f is balanced, the number of Mi =I equals the number of Mi =C. This implies:
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And therefore:

( ) 01
2
1

=∑ HM
j jn

This means that input vector |0..01>, in the case of balanced functions, can’t be mapped by the
quantum gate into a superposition containing vectors |0..00> or |0..01>.

The quantum block terminates with measurement. Considering the results showed till now, we
can determine the possible outputs of measurement and their probabilities:

Result of MeasurementSuperposition of Basis Vectors
Before Measurement Vector Probability

Constant functions:
G|0..01>=|0..0>⊗(α0|0>+α1|1>)

|0..00>
|0..01>

||α0||2

||α1||2

Balanced functions:
G|0..01>=Σ i∈{0,1}n − {0..00, 0..01} αi |i> ∀i∈{0,1}n−{0..00, 0..01}:|i> ||αi||2

The set  A−B is given  by all elements of A, unless those elements belonging to B too. This set
is sometimes denoted as A/B. The quantum block is repeated only one time in Deutsch-Jozsa’s
algorithm. So, the final collection is made only by one vector.

5. DECODER

As in Deutsch’s algorithm, when the final basis vector has been measured, we must interpret
it in order to decide if f is constant or balanced.
If the resulting vector is |0..0> we know that the function was constant, otherwise we decide
that it is balanced. In fact gate G produces a vector such that, when it is measured, only basis
vectors |0..00> and |0..01> have a non-null probability amplitude exclusively in the case f is
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constant. Besides, if f is balanced, these two vectors have null coefficients in the linear
combination of basis vectors generated by G. In this way, the resulting vector is easily
decoded in order to answer Deutsch-Jozsa’s problem:

Resulting Vector
after Measurement

Answer

|0..00> f is constant

|0..01> f is constant

otherwise f is balanced



SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 4: Simon’s Algorithm

1. AIM

In this part we are going to illustrate Simon’s algorithm using circuits and pointing out the
role of interference.

2. SIMON’S PROBLEM

Simon’s problem is so stated:

Input f:{0,1}n →{0,1}n :
∃s∈{0,1}n−{0..0}:∀x,y∈{0,1}n: f(x)=f(y) ⇔ (x=y ∨ x=y⊕s)

Problem Find s

3. ENCODER

As we did for Deutsch-Jozsa’s algorithm, we firstly consider some special cases.

A. Introductory example

Let’s consider the case:

( ) ( )
11

0101,0000
2

=
==

=

s
ff

n

Then, f map table is:

(x0,x1) f(x0,x1)
00 00
01 01
10 01
11 00
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Step1

Function f is encoded into the injective function F built in the usual way:

{ } { }
( ) ( ) ( )( )110110110110110 ,..,,,..,,,,..,,,..,,,,..,,

1,01,0:

−−−−−

++

⊕=
→

nnnnn

nnnn

yyyxxxfxxxyyyxxxF
thatsuchF

This is F map table:

Step2

Let’s now encode F map table into UF map table. As usually, the rule is:

∀t∈{0,1}n+n: UF [τ(t)]= τ[F(t)]

where τ is the code map defined in Part 1. This means:

Step3

Using the rule:

[ ] ijUU FijF =⇔= 1

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)
0000 0000
0100 0101
1000 1001
1100 1100
0001 0001
0101 0100
1001 1000
1101 1101

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)
0010 0010
0110 0111
1010 1011
1110 1110
0011 0011
0111 0110
1011 1010
1111 1111

|x0.. xn-1 y0.. yn-1> UF|x0.. xn-1 y0.. yn-1>
|0000> |0000>
|0100> |0101>
|1000> |1001>
|1100> |1100>
|0001> |0001>
|0101> |0100>
|1001> |1000>
|1101> |1101>

|x0.. xn-1 y0.. yn-1> UF|x0.. xn-1 y0.. yn-1>
|0010> |0010>
|0110> |0111>
|1010> |1011>
|1110> |1110>
|0011> |0011>
|0111> |0110>
|1011> |1010>
|1111> |1111>
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we calculate UF  as a block matrix:

UF |00> |01> |10> |11>
|00> I⊗I 0 0 0
|01> 0 I⊗C 0 0
|10> 0 0 I⊗C 0
|11> 0 0 0 I⊗I

This matrix preserves the first two vectors in the input tensor product vector and:

• it preserves the last two too when the first two vectors are |0> and |0> or |1> and |1>;
• it preserves the third vector, but it flips the fourth, when the first two vectors are |0> and

|1> or |1> and |0>.

Observe that the block matrix in cell (i,i) is identical to the block matrix in cell (i⊕s, i⊕s),
where i is the binary label of the vector marking the matrix row and column of the cell.

B. General case with n=2

In general, if n=2, repeating steps 1, 2 and 3 as we did for Deutsch-Jozsa’s algorithm, we
obtain the general operator UF in the following form:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi∈{I⊗I, I⊗C, C⊗I, C⊗C} and Mi=Mj ⇔(j=i∨j=i⊕s).

C. General case

Generalising the results obtained in the previous examples and reasoning like in Deutsch-
Jozsa’s algorithm, we can find the structure of UF for Simon’s algorithm too. The final matrix
is:

UF |0..0> |0..1> … |1..1>
|0..0> M0.. 0 0 … 0
|0..1> 0 M0.. 1 … 0

… … … … ...
|1..1> 0 0 0 M1.. 1

where Mi= P1 ⊗..⊗Pn , Pk∈{I, C}, k=1,..,n and Mi = Mj ⇔(j=i∨j=i⊕s).
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Note that the column labels are basis vectors of dimension n (not 2n).

4. QUANTUM BLOCK

The following circuit describes Simon’s quantum gate:

bit bit

|0>

H H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H|0> H
...

...

|0>

...
...

bit

bit

bit

bit

Figure 1: Circuit of Simon’s Quantum Gate – First Representation

Using the transformation rules defined in Part 1, we can easily compile this circuit into the
corresponding gate:

|0.. 0>

INPUT STEP OUTPUT

G |0..0>G=(nH ⊗nI) ⋅UF ⋅(
nH⊗nI)

Figure 2: Simon’s Quantum Gate
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Let’s calculate this gate and establish what output vector it produces. We firstly deal with the
introductory example of Section 1, passing then to the general case with n=2. Finally we
describe the gate structure in a general situation (n>0).

A. Introductory example

In the case considered before (n=2, f(00)=00, f(01)=01, s=11), the quantum gate assumes this
form:

G=(nH ⊗nI) ⋅UF ⋅(nH⊗nI)

where UF has been calculated in Section 1.
Let’s start finding matrix 2H ⊗2I, using the results about the tensor power of matrix H
obtained in Part 3:

2H ⊗2I |00> |01> |10> |11>
|00> 2I/2 2I/2 2I/2 2I/2
|01> 2I/2 - 2I/2 2I/2 - 2I/2
|10> 2I/2 2I/2 - 2I/2 - 2I/2
|11> 2I/2 - 2I/2 - 2I/2 2I/2

We recall matrix UF and calculate G:

UF |00> |01> |10> |11>
|00> 2I 0 0 0
|01> 0 I⊗C 0 0
|10> 0 0 I⊗C 0
|11> 0 0 0 2I

UF ⋅ (2H ⊗2I) |00> |01> |10> |11>
|00> 2I/2 2I /2 2I/2 2I/2
|01> I⊗C/2 - I⊗C/2 I⊗C/2 - I⊗C/2
|10> I⊗C/2 I⊗C/2 - I⊗C/2 - I⊗C/2
|11> 2I/2 - 2I/2 - 2I/2 2I/2

G |00> |01> |10> |11>
|00> ( 2I+I⊗C )/2 0 0 ( 2I−I⊗C )/2
|01> 0 ( 2I+I⊗C )/2 ( 2I−I⊗C )/2 0

|10> 0 ( 2I−I⊗C )/2 ( 2I+I⊗C )/2 0

|11> ( 2I−I⊗C )/2 0 0 ( 2I+I⊗C )/2

Having G this structure, when we apply it to vector |0000> we obtain the following result:
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If we measure the output vector we can obtain only 4 possible results: |0000>, |0001>, |1100>
and |1101>. Encode back into their binary labels the values of the first two basis vectors of
dimension 2 in the output tensor product: these labels are 00 or 11. Let’s solve the system:
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Since s=(11), then s=(t1 , t2). Therefore s can be calculated as the solution of the system:
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s
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s

B. General case with n=2

In the general case with n=2, matrix UF has the form:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi∈{I⊗I, I⊗C, C⊗I, C⊗C} and Mi = Mj ⇔ (j=i ∨ j=i⊕s).

Using matrix 2H ⊗2I (calculated above), we obtain:

UF ⋅ (2H ⊗2I) |00> |01> |10> |11>
|00> M00/2 M00/2 M00/2 M00/2
|01> M01/2 -M01/2 M01/2 -M01/2
|10> M10/2 M10/2 -M10/2 - M10/2
|11> M11/2 -M11/2 -M11/2 M11/2
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G |00> |01> |10> |11>
|00> (M00+M01+M10+M11)/4 (M00-M01+M10-M11)/4 (M00+M01-M10-M11)/4 (M00-M01-M10+M11)/4

|01> (M00-M01+M10-M11)/4 (M00+M01+M10+M11)/4 (M00-M01-M10+M11)/4 (M00+M01-M10-M11)/4

|10> (M00+M01-M10-M11)/4 (M00-M01-M10+M11)/4 (M00+M01+M10+M11)/4 (M00-M01+M10-M11)/4

|11> (M00-M01-M10+M11)/4 (M00+M01-M10-M11)/4 (M00-M01+M10-M11)/4 (M00+M01+M10+M11)/4

Now, consider the following cases:

1) s=01; 2) s=10; 3) s=11

In the first case M00=M01≠M10=M11. This means:

G01 |00> |01> |10> |11>
|00> (M00+M10)/2 0 (M00−M10)/2 0

|01> 0 (M00+M10)/2 0 (M00−M10)/2
|10> (M00−M10)/2 0 (M00+M10)/2 0

|11> 0 (M00−M10)/2 0 (M00+M10)/2

In the second case M00=M10 ≠M01=M11. This means:

G10 |00> |01> |10> |11>
|00> (M00+M01)/2 (M00−M01)/2 0 0

|01> (M00−M01)/2 (M00+M01)/2 0 0

|10> 0 0 (M00+M01)/2 (M00−M01)/2
|11> 0 0 (M00−M01)/2 (M00+M01)/2

Finally, in the third case M00=M11≠M01=M10. This means:

G11 |00> |01> |10> |11>
|00> (M00+M01)/2 0 0 (M00−M01)/2
|01> 0 (M00+M01)/2 (M00−M01)/2 0

|10> 0 (M00−M01)/2 (M00+M01)/2 0

|11> (M00−M01)/2 0 0 (M00+M01)/2

Consider the application of G01, G10 and G11 to vector |0000> in the three cases:

Case s Output vector: Gs|0000>
1 01 G01|0000>=1/2 |00>(M00+M10)|00> + 1/2 |10>(M00-M10)|00>
2 10 G10|0000>=1/2 |00>(M00+M01)|00> + 1/2 |01>(M00-M01)|00>
3 11 G11|0000>=1/2 |00>(M00+M01)|00> + 1/2 |11>(M00-M01)|00>
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If we measure the output vector in these three cases and we encode back into binary values the
first two basis vectors in the tensor product, we obtain the following result:

Case s Binary Values
(From The First Two Vectors)

Probabilities

1 01 (a, b)=(0,0)
(a, b)=(1,0)

0.5
0.5

2 10 (a, b)=(0,0)
(a ,b)=(0,1)

0.5
0.5

3 11 (a, b)=(0,1)
(a, b)=(1,1)

0.5
0.5

Let’s note that:
(a, b) ⋅ s = 0

where a and b are the binary values from the first two vectors. The equations so generated let
us find s as the solution of the corresponding system.

C. General case (n>0)

Let’s consider a general positive value for number n.
We saw that operator UF is:

UF |0..0> |0..1> … |1..1>
|0..0> M0.. 0 0 … 0
|0..1> 0 M0.. 1 … 0

… … … … …
|1..1> 0 0 0 M1.. 1

where Mi= P1⊗..⊗Pn , Pk∈{I, C}, k=1,..,n and and Mi = Mj ⇔ (j=i ∨ j=i⊕s).
Operator nH ⊗ nI is easily built from operator nH (already calculated in Part 3):

nH ⊗nI |0..0> |0..1> … |j> … |1..1>
|0..0> nI/2n/2 nI/2n/2 … nI/2n/2 … nI/2n/2

|0..1> nI/2n/2 - nI/2n/2 … (-1)(0..1) ⋅ j  (nI/2n/2) … - nI/2n/2

… … … … … … …
|i> nI/2n/2 (-1) i ⋅ (0..1) (nI/2n/2) … (-1)i⋅j (nI/2n/2) … (-1) i⋅(1..1) (nI/2n/2)
… … … … … … …

|1..1> nI/2n/2 - nI/2n/2 … (-1)(1..1)⋅j (nI/2n/2) … (-1)(1..1) ⋅ (1..1) ( nI/2n/2)
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UF ⋅ (nH ⊗nI) |0..0> … |j> … |1..1>
|0..0> M0..0/2n/2 … M0..0/2n/2 … M0..0/2n/2

… … … … … …
|i> Mi/2n/2 … (-1)i⋅j Mi/2n/2 … (-1)i ⋅ (1..1) Mi/2n/2

… … … … … …
|1..1> M1..1/2n/2 … (-1)(1..1) ⋅j M1..1/2n/2 … (-1)(1..1) ⋅(1..1) M1..1/2n/2

The first column of the final gate has the following form:

G |0..0> …
|0..0> (M0..0+..+Mi+..+M1..1)/2n …

… … …

|i> ( Σ j∈{0,1}n (-1)i⋅jMj )/2n …

… … …

|1..1> ( Σ  j∈{0,1}n (-1)(1..1) ⋅jMj )/2n …

Consider the term:
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where S is such that:

{ } ysxSyxysxSyx n =⊕−∈¬∃=⊕∈¬∃ :1,0,:,

The gate can be rewritten in this way:

G |0..0> …
|0..0> Σk∈S (-1)(0..0)⋅k[1+(-1)(0..0)⋅s]Mk  /2n …

… … …

|i> Σk∈S (-1)i⋅k[1+(-1)i⋅s]Mk  /2n …

… … …

|1..1> Σk∈S (-1)(1..1)⋅k[1+(-1)(1..1)⋅s]Mk/2n …

You see that the term [1+ (-1) i⋅s] is 0 if and only if i⋅s=1. So, only those cells in the column
that are labelled by |i> such that i⋅s=0 are non-null. This means that:
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The quantum block ends with measurement, which therefore produces a basis vector |i> such
that i⋅s=0.
How many times should the quantum block be repeated? A number that is sufficient to get
enough information to determine s. Since every vector will constitute a coefficient vector for
an equation where s is the variable vector, this number depends on how many different
equations we need in order to find s. Since s has length n, in general we will need a number n
of different equations. This requires, in general, a linear number of measurements (more
precisely the probability to get n different vectors in the final collection increases linearly with
n).

5. DECODER

The quantum block is repeated O(n) times till a collection of n different vectors have been
generated. As we did for the case n=2, for every vector in this collection, the first n basis
vectors of dimension 2 composing it through tensor product are encoded back into their binary
values. In this way they can be used as coefficients for building an equation whose variables
are the bits of s. By solving the system made of this equations, we can find s.

   



SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 5: Shor’s Algorithm

1. AIM

In this part we are going to illustrate Shor’s algorithm as a beefed-up version of Simon’s
algorithm.

2. SHOR’S PROBLEM

Shor’s problem is so stated:

Given an integer number N, find a factor p for N

This problem seems to be different from the other problems we analysed till now.
Nevertheless, it can be reduced to an equivalent problem with the same form as the other
quantum problems. This reduction is made possible by a result of number theory that relates
the period r of a special periodic function to the factors of an integer N. This function is:

( ) Naxfthatsuchf x
aNaN mod: ,, =ℵ→ℵ

where a is a random number coprime to N, namely:

( ) 1,gcd =Na

where gcd(x, y) is the greatest common divisor between x and y.

This function is periodical (the period is at most N). Let the period be r. Then:

( ) ( )rff aNaN ,, 0 =

namely:
Na r mod1≡

If the period is even, this equation can be rewritten as:

( ) ( ) ( )( ) NaaNaNa rrrrrr mod011mod01mod1 2/2/2/2/ ≡+−⇔≡−⇔≡

This means:

( )( ) hNaah rr =+−ℵ∈∃ 11: 2/2/
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So, unless (ar/2−1) ≡0modN or (ar/2+1) ≡0modN, namely ar/2 ≡±1modN, at least one of ar/2+1
or ar/2−1 should have a non-trivial factor in common with N. We find it calculating:

( ) ( )NagcdNagcd rr ,1,1 2/2/ +−

Using this reduction, the true question becomes: “What is the period of f?” Since the period of
this function is less than N, we can restrict it to the interval [0, 1, .., N-1]. We code every input
value as a binary string. We need n=[log N] (eventually [log N]+1) bits in order to code all the
N possible input values.

Therefore, Shor’s problem is translated into the following standard quantum problem:

Input f:{0,1}n →{0,1}n with period r
Problem Find r

3. ENCODER

We firstly deal with a simple example. Then we generalise our conclusions.

A. Introductory example

Let’s consider the case:

3;24 ==⇒= anN

Then, f map table is:

The period of this function is r=2.

Step1

Function f is encoded into the injective function F built in the same way as in Simon’s
algorithm. This is F map table:

(x0,x1) f(x0,x1)
00 01
01 10
10 01
11 10
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Step 2

Let’s now encode F into the map table of operator UF :

Step 3

The matrix corresponding to UF is obtained using the rule:

[ ] ijUU FijF =⇔= 1

or more simply observing that the first two vectors in the input tensor product are left
unchanged, whereas the operator acting on the last two is chosen inside of the set {I⊗I, I⊗C,
C⊗I, C⊗C} depending on the values of the first two vectors:

UF |00> |01> |10> |11>
|00> I⊗C 0 0 0
|01> 0 C⊗I 0 0
|10> 0 0 I⊗C 0
|11> 0 0 0 C⊗I

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)
0000 0001
0100 0110
1000 1001
1100 1110
0001 0000
0101 0111
1001 1000
1101 1111

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)
0010 0011
0110 0100
1010 1011
1110 1100
0011 0010
0111 0101
1011 1010
1111 1101

|x0.. xn-1 y0.. yn-1> UF|x0.. xn-1 y0.. yn-1>
|0000> |0001>
|0100> |0110>
|1000> |1001>
|1100> |1110>
|0001> |0000>
|0101> |0111>
|1001> |1000>
|1101> |1111>

|x0.. xn-1 y0.. yn-1> UF|x0.. xn-1 y0.. yn-1>
|0010> |0011>
|0110> |0100>
|1010> |1011>
|1110> |1100>
|0011> |0010>
|0111> |0101>
|1011> |1010>
|1111> |1101>
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This matrix preserves the first two vectors and:

• it preserves the third, flipping the fourth  when the first two vectors are |0> and |0> or |1>
and |0>;

• it flips the third vector, preserving the fourth when the first two vectors are |0> and |1> or
|1> and |1>.

Let’s observe that the block matrix in cell (i,i) is identical to the block matrix in cell
((i+r)modN, (i+r)modN) where i is the binary label of the vector marking the matrix row and
column of the cell.

B. General case with n=2

In general, if n=2, taking a different value for a and so a different period r, our operator still
maps the first n vectors into themselves, but the block matrix pattern on the main diagonal
changes.
Matrix UF has the following form:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi∈{I⊗I, I⊗C, C⊗I, C⊗C} and Mi=Mj ⇔ (j=i∨j=(i+r)modN).

C. General case

Reasoning in the same way, we propose the following general form for matrix UF when n>0:

UF |0..0> |0..1> … |1..1>
|0..0> M0.. 0 0 … 0
|0..1> 0 M0.. 1 … 0

... ... … … ...
|1..1> 0 0 0 M1.. 1

where Mi= P1 ⊗..⊗Pn , Pk∈{I, C}, k=1,..,n and and Mi = Mj ⇔(j=i ∨ j=(i+r)modN).
Like in Simon’s algorithm, the column labels are basis vectors of dimension n (not 2n).

4. QUANTUM BLOCK

As we did fo Simon’s algorithm we employ a quantum circuit in order to describe Shor’s
quantum gate. This circuit is reported in fig.1.
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Figure 1: Circuit of Shor’s Quantum Gate

Shor’s quantum gate circuit is very similar to Simon’s quantum gate circuit, unless for the last
operator. In Shor algorithm we applied operator nH to the first n vectors exiting from UF. This
operator was responsible of the annihilation of some cells in the first column of the final gate
and this effect produced a special superposition of basis vectors as output. Measuring this
superposition we obtained some coefficient vectors and we built an equation system in order
to find s. We said that the final operator produced interference among different basis vectors.
In Shor’s algorithm the interference operator isn’t nH any more, since the main diagonal
pattern of UF is different and we need a different interference operator in order to extract
information. This operator is represented by matrix QFTn, called Quantum Fourier Transform
of order n. This operator is non-classical since it maps a basis vector into a complex linear
combination of basis vector. In general, a basis vector |i> is mapped into the linear
combination α1y1+ ..+α2ny2n where αi and αi+1 have the same modulus 1/2n/2 but they are
shifted in the phase of i⋅(2π/2n) starting with α1=1/2n/2. The operator is so defined

φ=0 φ=2π/2n … φ=(2n–1)2π/2n

QFTn |0..0> |0..1> … |1..1>
|0..0> 1/2n/2 1/2n/2 … 1/2n/2

|0..1> 1/2n/2 1/2n/2 eJ2π/2n … 1/2n/2 eJ (2n –1) 2π/2n

… ... ... … …
|1..1> 1/2n/2

1/2n/2 eJ (2n –1) 2π/2n … 1/2n/2 eJ (2n –1)2 2π/2n

where J is the imaginary unit. Using the rules defined in Part 1 on the circuit of fig.1, we
obtain the final general quantum gate in fig.2. We are going to discuss the form of these gate
in some special case and then we shall generalise our observations.
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|0.. 0>

INPUT STEP OUTPUT

G |0..0>G=(QFTn ⊗nI) ⋅UF ⋅(nH⊗nI)

Figure 2: Shor’s Quantum Gate

A. Introductory example

In the case n=2, the quantum gate has the following form:

G=(QFT2 ⊗2I) ⋅UF ⋅(2H⊗2I)

 Let’s calculate this gate for our introductory example:

2H⊗2I |00> |01> |10> |11>
|00> 2I/2 2I/2 2I/2 2I/2
|01> 2I/2 -2I/2 2I/2 -2I/2
|10> 2I/2 2I/2 -2I/2 -2I/2
|11> 2I/2 -2I/2 -2I/2 2I/2

UF |00> |01> |10> |11>
|00> I⊗C 0 0 0
|01> 0 C⊗I 0 0
|10> 0 0 I⊗C 0
|11> 0 0 0 C⊗I

If n=2, QFT2 is so calculated:

φ=0 φ=π/2 φ=π φ=3π/2QFT2 |00> |01> |10> |11>
|00> 1/2 1/2 1/2 1/2
|01> 1/2 J/2 -1/2 -J/2
|10> 1/2 -1/2 1/2 -1/2
|11> 1/2 -J/2 -1/2 J/2
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UF⋅(2H ⊗2I) |00> |01> |10> |11>
|00> I⊗C/2 I⊗C/2 I⊗C/2 I⊗C/2
|01> C⊗I/2 -C⊗I/2 C⊗I/2 -C⊗I/2
|10> I⊗C/2 I⊗C/2 -I⊗C/2 -I⊗C /2
|11> C⊗I/2 -C⊗I/2 -C⊗I/2 C⊗I/2

QFT2⊗
2I |00> |01> |10> |11>

|00> 2I/2 2I/2 2I/2 2I/2
|01> 2I/2 J 2I/2 -2I/2 -J 2I/2
|10> 2I/2 -2I/2 2I/2 -2I/2
|11> 2I/2 -J 2I/2 -2I/2 J 2I/2

G |00> |01> |10> |11>
|00> (I⊗C+C⊗I)/2 (I⊗C-C⊗I)/2 0 0

|01> 0 0 (I⊗C+JC⊗I)/2 (I⊗C-JC⊗I)/2
|10> (I⊗C-C⊗I)/2 (I⊗C+C⊗I)/2 0 0

|11> 0 0 (I⊗C-JC⊗I)/2 (I⊗C+JC⊗I)/2

Consider the application of G to vector |0000>:

( ) ( ) 00
2
1

1000
2
1

000000 ICCIICCIG ⊗−⊗+⊗+⊗=

Therefore:

( ) ( )

( ) ( )101000
2
1

011000
2
1

001000
2
1

001000
2
1

0000

−++

=⊗−+⊗+= ICCIG

If we do a measurement of this vector and encode back the first two vectors of dimension 2 in
the resulting tensor product vector, the possible results are:

00 with probability 0.5
10 with probability 0.5

The distance between this values is d=[|10-00|]10=[10]10=2, where [s]10 is the decimal
representation of the binary string s. Observe that N/r=4/2=2. Therefore d=N/r. If we don’t
know r, then we can calculate it as:

r=N/d

It might be useful to picture the evolution of the probability amplitude of every basis vector
while operator 2H⊗2I, UF and QFT2⊗2I are applied in sequence. This is done in fig.3:
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Figure 3.a: Input Probability Amplitudes

Figure 3.b: Probability Amplitudes after Step 1 (Fig. 1)

Figure 3.c: Probability Amplitudes after Step 2 (Fig. 1)

Figure 3.d: Contribute of |0001> through QFT (Real Part)
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Figure 3.e: Contribute of |0001> through QFT (Imaginary Part)

Figure 3.f: Contribute of |0110> through QFT  (Real Part)

Figure 3.g: Contribute of |0110> through QFT  (Imaginary Part)

Figure 3.h: Contribute of |1001> through QFT  (Real Part)
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Figure 3.i: Contribute of |1001> through QFT (Imaginary Part)

Figure 3.k: Contribute of |1110> through QFT  (Real Part)

Figure 3.l: Contribute of |1110> through QFT  (Imaginary Part)

Figure 3.m:  Input Probability Amplitudes (Real Part) after Step 3 (Fig. 1)
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Figure 3.n: Input Probability Amplitudes (Imaginary Part) after Step 3 (Fig. 1)

These pictures should help the reader to understand the role of the operators composing the
quantum gate. We have described the probability amplitude contribute of every basis vector in
the supeposition obtained after the action of UF through QFT. These contributes are then
summed up and interference takes place. In order to understand every passage, it is useful to
calculate our results applying matrix QFT2⊗

2I to the vector superposition of fig.3.c.
We can note that the strength of the algorithm is in the use of QFT after correlation have been
created by UF.

B. General case with n=2, r=2

We saw that when n=2, the quantum gate has the following form:

G=(QFT2 ⊗2I) ⋅UF ⋅(2H⊗2I)

Using the matrices calculated in the introductory example and recalling UF in this situation:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mi∈{I⊗I, I⊗C, C⊗I, C⊗C} and Mi = Mj ⇔ (j=i∨j=(i+r)modN), we find the following
generalised form for G:

UF⋅(2H ⊗2I) |00> |01> |10> |11>
|00> M00/2 M00/2 M00/2 M00/2
|01> M01/2 -M01/2 M01/2 -M01/2
|10> M10/2 M10/2 -M10/2 -M10/2
|11> M11/2 -M11/2 -M11/2 M11/2
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QFT2⊗
2I |00> |01> |10> |11>

|00> 2I/2 2I/2 2I/2 2I/2
|01> 2I/2 J 2I/2 -2I/2 -J 2I/2
|10> 2I/2 -2I/2 2I/2 -2I/2
|11> 2I/2 -J 2I/2 -2I/2 J 2I/2

G |00> |01> |10> |11>
|00> (M00+M01+M10+M11)/4 (M00-M01+M10-M11)/4 (M00+M01-M10-M11)/4 (M00-M01-M10+M11)/4

|01> (M00+JM01-M10-JM11)/4 (M00-JM01-M10+JM11)/4 (M00+JM01+M10+JM11)/4 (M00-JM01+M10-JM11)/4

|10> (M00-M01+M10-M11)/4 (M00+M01+M10+M11)/4 (M00-M01-M10+M11)/4 (M00+M01-M10-M11)/4

|11> (M00-JM01-M10+JM11)/4 (M00+JM01-M10-JM11)/4 (M00-JM01+M10-JM11)/4 (M00+JM01+M10+JM11)/4

If r=2, like in our introductory example, then M00=M10 ≠M01=M11. This means:

G |00> |01> |10> |11>
|00> (M00+M01)/2 (M00-M01)/2 0 0

|01> 0 0 (M00+JM01)/2 (M00-JM01)/2

|10> (M00-M01)/2 (M00+M01)/2 0 0

|11> 0 0 (M00-JM01)/2 (M00+JM01)/2

Consider the application of G to vector |0000>:

( ) ( ) 00
2
1

1000
2
1

000000 01000100 MMMMG −++=

If we do a measurement of this vector and encode back the first two vectors of dimension 2
(in the resulting tensor product) into their binary labels, then the possible results are:

00 with probability 0.5
10 with probability 0.5

These are the same results we obtained for our introductory example and the same
conclusions hold.

C. General case

We saw that, in the general case, operator UF is defined as:

UF |0..0> |0..1> … |1..1>
|0..0> M0.. 0 0 … 0
|0..1> 0 M0.. 1 … 0

… … ... … ...
|1..1> 0 0 0 M1.. 1
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where Mi= P1 ⊗..⊗Pn , Pk∈{I, C}, k=1,..,n and Mi=Mj⇔(j=i∨j=(i+r)modN).
Let’s calculate the gate G in this general situation:

nH ⊗nI |0..0> |0..1> … |j> … |1..1>
|0..0> nI/2n/2 nI/2n/2 … nI/2n/2 … nI/2n/2

|0..1> nI/2n/2 - nI/2n/2 … (-1)(0..1) ⋅ j  (nI/2n/2) … - nI/2n/2

… … … … … … …
|i> nI/2n/2 (-1) i ⋅ (0..1) (nI/2n/2) … (-1)i⋅j (nI/2n/2) … (-1) i⋅(1..1) (nI/2n/2)
… … … … … … …

|1..1> nI/2n/2 - nI/2n/2 … (-1)(1..1)⋅j (nI/2n/2) … (-1)(1..1) ⋅ (1..1) ( nI/2n/2)

UF ⋅ (nH ⊗nI) |0..0> … |j> … |1..1>
|0..0> M0..0/2n/2 … M0..0/2n/2 … M0..0/2n/2

… … … … … …
|i> Mi/2n/2 … (-1)i⋅j Mi/2n/2 … (-1)i ⋅ (1..1) Mi/2n/2

… … … … … …
|1..1> M1..1/2n/2 … (-1)(1..1) ⋅j M1..1/2n/2 … (-1)(1..1) ⋅(1..1) M1..1/2n/2

Observe that:

[ ]
[ ] [ ]

n

j
iJ

nji eQFT 2

2

2/,

10
10

2
1

π⋅
⋅

=

where [i]10 and [j]10 are the decimal representations of binary strings i and j. Therefore:

QFTn⊗ nI |0..0> … |j> … |1..1>
|0..0> nI/2n/2 … nI/2n/2 … nI/2n/2

… ... … … … …
|i> nI/2n/2 … nI/2n/2eJ[i]10⋅[j]102π/2n … nI/2n/2 eJ[i]10⋅(2n –1) 2π/2n

… … … … … …
|1..1> nI/2n/2 … nI/2n/2eJ(2n –1)⋅[j]102π/2n … nI/2n/2 eJ(2n –1)2 2π/2n

 The final gate has the following form:

G |0..0> …
|0..0> 1/2nΣk∈{0,1}n eJπ ⋅ 0 ⋅ [k]

10 
/2n -1) Mk

…

… … …
|i> 1/2nΣk∈{0,1}n eJπ ⋅ [i]

10 
⋅ [k]

10
/2n-1 Mk

…

… … ...
|1..1> 1/2nΣk∈{0,1}n eJπ ⋅ (2n -1) ⋅ [k]

10
/2n-1 Mk

...
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Consider the term:

1/2nΣk∈{0,1}n eJπ ⋅ [i]
10 

⋅ [k]
10

/2n-1 Mk

Since Mi= P1⊗..⊗Pn , Pk∈{I, C}, k=1,..,n and and Mi = Mj ⇔(j=i ∨ j=(i+r)modN) this term
may be written as:

1/2nΣh∈R [eJπ ⋅ [i]
10

⋅ [h]
10

/2n-1 + eJπ ⋅ [i]
10

⋅ ([h]
10

+1r)/2n-1
+ .. + eJπ ⋅ [i ]

10
⋅ ([h ]

10
+(lk−1)r)/2n-1

] Mh

or:

1/2nΣh∈R (-1)[h]
10

[i]
10

/2n-1 [(-1)0r[i]
10

/2n-1
 + (-1)1r[i]

10
/2n-1

+ .. + (-1)(lh-1)r[i]
10

/2n-1
]Mh

where R={0..0,0..1, .., [r-1]2}. Suppose N is a multiple of r, then lh=2n/r=l for every h.
Therefore, the previous term can be transformed into:

1/2nΣh∈R (-1)[h]
10

[i]
10

/2n-1 [(-1)2⋅0⋅[i]
10

/l + (-1)2⋅1⋅[i]
10

/l + .. + (-1)2⋅(l−1)⋅[i]
10

/l]Mh

and finally:

1/2nΣh∈R (-1)[h]
10

[i]
10

/2n-1
 [eJ⋅0⋅(2π [i]

10
/l) + eJ⋅1⋅(2π [i]

10
/l) + .. + eJ⋅(l−1) (2π [i]

10
/l)]Mh

The term:

eJ⋅0⋅(2π [i]
10

/l) + eJ⋅1⋅(2π [i]
10

/l) + .. + eJ⋅(l−1)⋅(2π [i ]
10

/l)

is the summation of the l roots of order l of the unity, unless i is a multiple of l. The
summation of the roots of a given order of the unity is always null.
So, in the first column of G only those cells whose row label is |i> with i multiple of l are non-
null. This means that applying G to vector |0..0>, measuring the result and encoding back into
their binary values the first n basis vectors of dimension 2 in the resulting tensor product, we
obtain only strings i such that i=m⋅l for some integer m. This means l≡0modi.

5. DECODER

The quantum block, as we did for Simon’s algorithm, is repeated several times in order to
build a collection of vector |i> such that l≡0mod i. Putting these equations in a system and
solving it, we obtain the value of l. Since l=2n/r, we calculate r=2n/l.
How many vectors do we need in order to get r? It depends on the technique we use to solve
the system. In general, we need to repeat the quantum block a number of time that increases
polynomially with n.
If 2n is not a multiple of r, then lh=[2n/r] for some h, lh=[2n/r]+1 for some other ones. The term
eJ⋅0 (2π [i]

10
/lh) + eJ⋅1(2π [i]

10
/lh) + .. + eJ⋅(lh -1) (2π [i]

10
/ lh) is not exactly 0 when i isn’t a multiple of lh,

although it approximates 0. So, all possible strings may be found as result of measurement,
but strings i that don’t represent a multiple of 2n/r are less likely to be observed. In order to
decrease this probability (and increase the probability of 2n/r−multiples) we employ 2n input
bits for encoding f. This means that more roots of the unity are involved and so a better
approximation is reached.



SIMULATION OF QUANTUM ALGORITHMS
ON CLASSICAL COMPUTERS

Part 6: Grover’s Algorithm

1. AIM

As Shor’s algorithm is a variant on Simon’s algorithm, where the difference is played by the
interference block, Grover’s algorithm is described here as a variation on Deutsch-Jozsa’s
algorithm introduced in Part 3.

2. GROVER’S PROBLEM

Grover’s problem is so stated:

Input A function f:{0,1}n →{0,1} such that
∃x∈{0,1}n: (f(x)=1∧∀y∈{0,1}n:x≠y⇒f(y)=0)

Problem Find x

In Deutsch-Jozsa’s algorithm we distinguished two classes of input functions and we were
supposed to decide what class the input function belonged to. In this case the problem is in
some sense identical in its form, even if it is harder because now we are dealing with 2n

classes of input functions (each function of the kind described constitutes a class).

3. ENCODER

In order to make the discussion more comprehensible, we prefer firstly to consider a special
function with n=2. Then we discuss the general case with n=2 and finally we analyse the
general case with n>0.

A. Introductory example

Let’s consider the case:
( ) 1012 == fn

In this case f map table is so defined:

x f(x)
00 0
01 1
10 0
11 0
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Step 1

Function  f is encoded into injective function F, built according to the usual statement:

{ } { } ( ) ( )( )01010010
11 ,,,,,:1,01,0: yxxfxxyxxFF nn ⊕=→ ++

Then F map table is:

Step 2

Let’s now encode F into the map table of UF using the usual rule:

∀s∈{0,1}n+1: UF [τ(s)]= τ[F(s)]

where τ is the code map defined in Part 1. This means:

Step 3

From the map table of UF we are supposed to calculate the corresponding matrix operator.
This matrix is obtained using the rule:

[ ] ijUU FijF =⇔= 1

UF is so calculated:

(x0, x1, y0) F(x0, x1, y0)
000 000
010 011
100 100
110 110
001 001
011 010
101 101
111 111

|x0 x1 y0> UF |x0 x1 y0>
|000> |000>
|010> |011>
|100> |100>
|110> |110>
|001> |001>
|011> |011>
|101> |101>
|111> |111>
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UF |00> |01> |10> |11>
|00> I 0 0 0
|01> 0 C 0 0
|10> 0 0 I 0
|11> 0 0 0 I

The effect of this matrix is to leave unchanged the first and the second input basis vectors of
the input tensor product, flipping the third one when the first vector is |0> and the second is
|1>. This agrees with the constraints on UF stated above.

B. General case with n=2

Let’s now take into consideration the more general case:

( ) 12 == xfn

The corresponding matrix operator is:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

with Mx=C∧∀i≠x:Mi=I.

C. General case

It is fairly natural to generalise operator UF from the case n=2 to the case n>1. In fact, we
always find operator C on the main diagonal of the block matrix, in correspondence of the
celled labelled by vector |x>, where x is the binary string having image one by f. Therefore:

UF |00> |01> … |11>
|00> M00 0 … 0
|01> 0 M01 … 0
… … … … …

|11> 0 0 … M11

with Mx=C∧∀i≠x:Mi=I.
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4. QUANTUM BLOCK

Matrix UF, the output of the encoder, is embedded into the quantum gate. We describe this
gate using a quantum circuit:

|1>

H
UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H

H|0>

Dn
...n

h

h

h

bit

bit

bit

Figure 1: Circuit of Grover’s Quantum Gate

Operator Dn is called diffusion matrix of order n and it is responsible of interference in this
algorithm. It plays the same role as QFTn  in Shor’s algorithm and of nH in Deutsch-Jozsa’s
and Simon’s algorithms. This matrix is defined in this way:

Dn |0..0> |0..1> … |i> … |1..0> |1..1>
|0..0> -1+1/2n-1 1/2n-1 … 1/2n-1 … 1/2n-1 1/2n-1

|0..1> 1/2n-1 -1+1/2n-1 … 1/2n-1 … 1/2n-1 1/2n-1

… … … … … … … …
|i> 1/2n-1 1/2n-1 … -1+1/2n-1 … 1/2n-1 1/2n-1

… … … … … … … …
|1..0> 1/2n-1 1/2n-1 … 1/2n-1 … -1+1/2n-1 1/2n-1

|1..1> 1/2n-1 1/2n-1 … 1/2n-1 … 1/2n-1 -1+1/2n-1

Using rule 3 (Part 1), we compile the previous circuit into the following:

 

|0.. 01>

INPUT STEP OUTPUT

G |0..01>G=[(Dn ⊗nI) ⋅UF ]
h ⋅ (nH⊗nI)

Figure 2: Grover’s Quantum Gate
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A. Introductory example

In the introductory example we dealt above, UF had the following form:

UF |00> |01> |10> |11>
|00> I 0 0 0
|01> 0 C 0 0
|10> 0 0 I 0
|11> 0 0 0 I

Let’s calculate the quantum gate G=[(D2⊗I) ⋅UF  ]h ⋅ ( 2+1H) in this case:

3H |00> |01> |10> |11>
|00> H/2 H/2 H/2 H/2
|01> H/2 -H/2 H/2 -H/2
|10> H/2 H/2 -H/2 -H/2
|11> H/2 -H/2 -H/2 H/2

D2⊗I |00> |01> |10> |11>
|00> -I/2 I/2 I/2 I/2
|01> I/2 -I/2 I/2 I/2
|10> I/2 I/2 -I/2 I/2
|11> I/2 I/2 I/2 -I/2

UF ⋅ 3H |00> |01> |10> |11>
|00> H/2 H/2 H/2 H/2
|01> CH/2 -CH/2 CH/2 -CH/2
|10> H/2 H/2 -H/2 -H/2
|11> H/2 -H/2 -H/2 H/2

Choosing h=1, we obtain:

G |00> |01> |10> |11>
|00> (C+I)H/4 (-C-I)H/4 (C-3I)H/4 (-C-I)H/4

|01> (-C+3I)H/4 (C+I)H/4 (-C-I)H/4 (C+I)H/4

|10> (C+I)H/4 (-C-I)H/4 (C+I)H/4 (-C+3I)H/4

|11> (C+I)H/4 (-C+3I)H/4 (C+I)H/4 (-C-I)H/4

Now, consider the application of G to vector |001>:
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( ) ( )

( ) ( ) 111
4
1

110
4
1

1301
4
1

100
4
1

001

HICHIC

HICHICG

+⊗++⊗

++−⊗++⊗=

Let’s calculate the operator (-C+3I)H/4. Then:

-C+3I |0> |1>
|0> 3 -1
|1> -1 3

(-C+3I)H/4 |0> |1>
|0> 1/23/2 1/21/2

|1> 1/23/2 -1/21/2

Therefore:

( ) ( )10
2

1
13

4
1

−=+− HIC

Let’s calculate the operator (C+I)H/4. Then:

C+I |0> |1>
|0> 1 1
|1> 1 1

(C+I)H/4 |0> |1>
|0> 1/23/2 0
|1> 1/23/2 0

Therefore:

( ) 01
4
1

=+ HIC

This means that |001> is mapped into vector |01>(|0>-|1>)/21/2. Taking the binary values of
the first two vectors of dimension 2, we find x.

It might be useful to picture the evolution of the probability amplitude of every basis vector
while operator 3H, UF and D2⊗I are applied in sequence. This is done in fig.3:
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Figure 3.a: Input Probability Amplitudes

Figure 3.b: Probability Amplitudes after Step 1 (Fig. 1)

Figure 3.c: Probability Amplitudes after Step 2 (Fig. 1)

Figure 3.d: Probability Amplitudes after Step 3 (Fig. 1)
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Operator 3H puts the initial canonical basis vector |001> into a superposition of all basis
vectors with the same (real) coefficients in modulus, but with positive sign if the last vector is
|0>, negative otherwise. Operator UF creates correlation: it flips the third vector if the first two
vector are |0> and |1>. Finally, D2⊗I produces interference: for every basis vector |x0x1y0> it
calculates its output probability amplitude α’x0x1y0 by inverting its initial probability amplitude
αx0x1y0 and summing the double of the mean α y0 of the probability amplitude of all vectors in
the form |x0x1y0>. In our example α0=1/(4⋅21/2), α1= -1/(4⋅21/2). Take, for instance, basis vector
|000>. Then α’000=-α000+2α0=-1/(2⋅21/2)+2/(4⋅21/2)=0.

B. General case with n=2

In general, if n=2, UF has the following form:

UF |00> |01> |10> |11>
|00> M00 0 0 0
|01> 0 M01 0 0
|10> 0 0 M10 0
|11> 0 0 0 M11

where Mx= C∧∀i≠x:Mi= I (x,i∈:{0,1}n ).
Let’s calculate the quantum gate G=(D2⊗I) ⋅UF ⋅(2+1H) in this general case:

UF ⋅ 3H |00> |01> |10> |11>
|00> M00H/2 M00H/2 M00H/2 M00H/2
|01> M01H/2 -M01H/2 M01H/2 -M01H/2
|10> M10H/2 M10H/2 - M10H/2 - M10H/2
|11> M11H/2 - M11H/2 - M11H/2 M11H/2

G |00> |01> |10> |11>
|00> (-M00+M01+M10+M11)H/4 (-M00-M01+M10-M11)H/4 (-M00+M01-M10-M11)H/4 (-M00-M01-M10+M11)H/4

|01> (M00-M01+M10+M11)H/4 (M00+M01+M10-M11)H/4 (M00-M01-M10-M11)H/4 (M00+M01-M10+M11)H/4

|10> (M00+M01-M10+M11)H/4 (M00-M01-M10-M11)H/4 (M00+M01+M10-M11)H/4 (M00-M01+M10+M11)H/4

|11> (M00+M01+M10-M11)H/4 (M00-M01+M10+M11)H/4 (M00+M01-M10+M11)H/4 (M00-M01-M10-M11)H/4

Now, consider the application of G to vector |001>:

( ) ( )

( ) ( ) 111
4
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110
4
1

101
4
1

100
4
1

001

1110010011100100

1110010011100100
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+++−⊗++++−⊗=
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Consider the following cases:

x=00:

( ) ( )

( ) ( ) 
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x=01:
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( ) ( ) 
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x=10:
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x=11:
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This means that if we measure the output vector and encode back the first two basis vectors of
dimension 2 in the resulting tensor product, we get the following results:

x Result Probability
00 00 1
01 01 1
10 10 1
11 11 1

D. General case (n>0)

In the general case n>0, UF has the following form:
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UF |0..0> |0..1> … |1..1>
|0..0> M0..0 0 0 0
|0..1> 0 M0..1 0 0

… … … … …
|1..1> 0 0 0 M1..1

where Mx= C∧∀i≠x:Mi= I (x,i∈:{0,1}n ).
Let’s calculate the quantum gate G=(Dn⊗I)h ⋅UF ⋅( n+1H):

n+1H |0..0> … |j> … |1..1>
|0..0> H/2n/2 … H/2n/2 … H/2n/2

… … … … … …
|i> H/2n/2 … (-1)i⋅jH/2n/2 … (-1)i ⋅ (1..1)H/2n/2

… … … … … …
|11> H/2n/2 … (-1)(1..1) ⋅ jH/2n/2 … (-1)(1..1) ⋅(1..1)H/2n/2

Dn⊗I |0..0> |0..1> … |i> … |1..0> |1..1>
|0..0> -I+I/2n-1 I/2n-1 … I/2n-1 … I/2n-1 I/2n-1

|0..1> I/2n-1 -I+I/2n-1 … I/2n-1 … I/2n-1 I/2n-1

… … … … … … … …
|i> I/2n-1 I/2n-1 … -I+I/2n-1 … I/2n-1 I/2n-1

… … … … … … … …
|1..0> I/2n-1 I/2n-1 … I/2n-1 … -I+I/2n-1 I/2n-1

|1..1> I/2n-1 I/2n-1 … I/2n-1 … I/2n-1 -I+I/2n-1

UF ⋅ n+1H |0..0> … |j> … |1..1>
|0..0> M0..0H/2n/2 … M0..0H/2n/2 … M0..0H/2n/2

… … … … … …
|i> MiH /2n/2 … (-1)i⋅j MiH/2n/2 … (-1)i ⋅ (1..1) MiH/2n/2

… … … … … …
|1..1> M1..1H/2n/2 … (-1)(1..1) ⋅j M1..1H/2n/2 … (-1)(1..1) ⋅(1..1) M1..1H/2n/2

Now, suppose h=1. Then:

Gh=1 |0..0> …
|0..0> (-M0..0+Σ j∈{0,1}n Mi/2n-1)H/2n/2 …

… … …

|i> (-Mi+Σ j∈{0,1}n Mi/2n-1)H/2n/2 …

… … …

|1..1> (-M1..1+Σ j∈{0,1}n Mi/2n-1)H/2n/2 …
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Being Mx= C and ∀i≠x:Mi= I, this column may be written as:

Gh=1 |0..0> …
|0..0> (-I+Σ j∈{0,1}n−{x} I/2n-1+ C/2n-1)H/2n/2 …

… … …

|x> (-C+Σ j∈{0,1}n−{x} I/2n-1+ C/2n-1)H/2n/2 …

… … …

|1..1> (-I+Σ j∈{0,1}n−{x} I/2n-1+ C/2n-1)H/2n/2 …

and so:

Gh=1 |0..0> …
|0..0> {[-1+(2n−1)/2n-1]I+ C/2n-1}H/2n/2 …

… … …
|x> {(2n−1)/2n-1I+ [-1+1/2n-1]C}H/2n/2 …

… … …

|1..1> {[-1+(2n−1)/2n-1]I+ C/2n-1}H/2n/2 …

Now, consider to apply matrix operator {[-1+(2n−1)/2n-1]I+ C/2n-1}H/2n/2 and matrix operator
{(2n−1)/2n-1I+ [-1+1/2n-1]C}H/2n/2 to vector |1>:
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This means:
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which can be written as a block vector:

Gh=1 |0..01>
|0..0> [−1+(2n-2)/2n-1] /2n/2H|1>

… …
|x> [+1+(2n-2)/2n-1] /2n/2H|1>
… …

|1..1> [−1+(2n-2)/2n-1] /2n/2H|1>
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Now, we imagine to apply operator (Dn⊗I)⋅UF to a vector in this form:

|ϕ>
|0..0> αH|1>

… …
|x> βH|1>
… …

|1..1> αH|1>

where α and β are real number such that (2n-1)α2+β2=1. The result is:

UF⋅|ϕ>
|0..0> αH|1>

… …
|x> βCH|1>
… …

|1..1> αH|1>

(Dn⊗I )⋅UF⋅|ϕ>
|0..0> (−α+Σ j∈{0,1}n−{x}α/2n-1−β/2n-1)H|1>

… …

|x> (+β+Σ j∈{0,1}n−{x}α/2n-1−β/2n-1)H|1>
… …

|1..1> (−α+Σ j∈{0,1}n−{x}α/2n-1−β/2n-1)H|1>

(Dn⊗I )⋅UF⋅|ϕ>
|0..0> {−α+[(2n−1)α −β] /2n-1}H|1>

… …

|x> {+β+[(2n−1)α −β] /2n-1}H|1>
… …

|1..1> {−α+[(2n−1)α −β] /2n-1}H|1>

This means that if we start from vector Gh=1|0..01>, which is in the form considered, and we
apply h times operator (Dn⊗I )⋅ UF, the coefficients at time t are such that:
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So, β increases, α decreases. Consider the vector superposition in fig.4.a:

Figure 4.a: Vector Superposition

By applying 4H the vector superposition becomes (fig.4.b):

Figure 4.b:  Superposition of fig.4.a after 4H has been applied

Operator UF  (with x=001) generates the following vector superposition (fig.4.c):

Figure 4.c: UF  (with x=001) has been applied and entanglement created

Finally, after the action of Dn⊗I the superposition is:
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Figure 4.d: Dn⊗I has acted and interference took place.

Here, the probability amplitudes of non-interesting vectors are not null, but they are very
small.
Suppose to apply operator UF again. The resulting superposition is reported in fig.4.e.

Figure 4.e: UF is applied a second time

Then, by applying Dn⊗I, we obtain the vector linear combination of fig.4.f.

Figure 4.f: Dn⊗I is applied a second time
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We can observe that the probability amplitude of the desired vectors has increased in
modulus. This means a greater probability to measure vectors |0010> or |0011>.
If we do measurement after h repetitions of operator Dn⋅UF, what is the probability P(h) to
measure vectors |x>⊗|0> or |x>⊗|1>? We can show that the:

P’(h)=O(2-n/2)

The quantum block is repeated only 1 time with a sufficiently large h=O(2n/2).
So, the final collected basis vector is unique.

5. DECODER

As in Deutsch-Jozsa’s algorithm, when the output vector from the quantum gate has been
measured, we must interpret it in order to find x.
From the analyses we did above, this step is very simple. In fact, it is sufficient to choose a
large h in order to get the searched vector  |x>|0> or |x>|1> with probability near to 1. After
getting it we encode back into their binary values the first n basis vector in the resulting tensor
product, obtaining string x as final answer.
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Part 7: Comparing Quantum Algorithms

1. AIM

We want now to compare the algorithms analysed in the previous parts in order to define a
general way to simulate quantum algorithms on classical computers.

2. PROBLEMS AND UF STRUCTURES

We deal only with the four algorithms discussed in Parts 3, 4, 5 and 6, since Deutsch’s
algorithm is considered as a special case of Deutsch-Jozsa’s algorithm. The four problems are
resumed in Tab.1.

We reported the structure of UF-operators for the general case n>0, in order to point out how
the algorithms depend on the special structures of these matrices. We should note that every
problem is characterised by a special “pattern” on the main diagonal of the block matrix
describing UF.

You see that Deutsch-Jozsa is a decision problem, whereas other problems are search
problems. Nevertheless, all problems may be restated in a more general way. In fact, we
always distinguish some disjoint classes for the input functions:

• constant and balanced functions in Deutsch-Jozsa’s problem;
• functions characterised by a given s in Simon’s problem;
• functions characterised by a given period r in Shor’s problem;
• functions whose class-property is a binary string x in Grover’s problem.

Every algorithm is thought in order to decide, given an input function, which class it belongs
to. The fact to belong to a given class is in some sense encoded into matrix UF. The
algorithm’s aim is to extract this information from UF and encode it into some final vectors.

Let’s observe that Deutsch-Jozsa and Grover’s problems consider functions f:{0,1}n →{0,1},
whereas Simon and Shor’s problems consider input functions f:{0,1}n →{0,1}n. In general we
talk of functions f:{0,1}n →{0,1}m where m=1 or m=n. In the first case we deal with truth
functions, in the second with binary string functions.



n>0
UF |0..0> |0..1> … |1..1>

|0..0> M0..0 0 0 0
|0..1> 0 M0..1 0 0

… … … … …

NAME
AND

INPUT
FUNCTION

KINDS OF INPUT FUNCTIONS

|1..1> 0 0 0 M1..1

PROBLEM

Deutsch-Jozsa

f:{0,1}n →{0,1}

1. A. ∀x∈{0,1}n: f(x)=0
B. ∀x∈{0,1}n: f(x)=1

2. |{x∈{0,1}n: f(x)=0}| = |{x∈{0,1}n: f(x)=1}|

1. Mi∈{I, C}, ∀i,j: Mi = Mj

2. Mi∈{I, C},
|{Mi :Mi = I}| = |{Mi :Mi =C}|

Decide if f is constant (1)
or balanced (2)

Simon

f:{0,1}n →{0,1}n

∃s∈{0,1}n –{0,..,0}:∀x,y∈{0,1}n :
f(x)=f(y) ⇔ (x=y ∨ x=y⊕s)

Mi = P1⊗..⊗Pn , Pk∈{I, C}, k=1,..,n
and Mi = Mj ⇔(j=i ∨ j=i⊕s) Find s

Shor

f:{0,1}n →{0,1}n

∃r∈{0,1}n –{0,..,0}:∀x,y∈{0,1}n:
f(x)=f(y) ⇔ (x=y ∨ x=(y+r)mod2n)

Mi = P1⊗..⊗Pn , Pk∈{I, C}, k=1,..,n
and Mi = Mj ⇔(j=i ∨ j=(i+r)mod2n) Find r

Grover

f:{0,1}n →{0,1}

∃x∈{0,1}n:
(f(x)=1 ∧∀y∈{0,1}n: y≠x ⇒ f(x)=0)

Mi∈{I, C},
∃i: (Mi = C ∧∀j ≠i ⇒ Mi = I) Find x

Table 1: Quantum Problems and UF structure
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3. QUANTUM GATES

The true heart of the quantum block is the quantum gate. Its function is to extract information
from UF and encode it into some basis vectors in order to answer the initial question of the
problem. We used quantum circuits in order to provide a high-level description of a quantum
gate. Using this description technique, we can now give a unified general representation of the
quantum gates we employed in our analyses. Every gate is here intended as a special case of
the quantum circuit reported in the general prototype of quantum block pictured in fig.1.

Figure 1: General Prototype of Quantum Block

We should finally observe that the difference between the four analysed quantum algorithms
is essentially in the choice of the interference operator Int and of the superposition operator S.
The input vector is a sort of message that traverses a quantum channel made of three main
sub-channels: superposition, entanglement and interference. The entanglement channel is the
true input of the algorithm gate. It belongs to a given family depending on the problem to
solve and on its input. The superposition and especially the interference channels are chosen
in such a way that some measurements effectuated at the end of the channel reveal what kind
of entanglement has taken place at the middle of the channel.

Our next objective is to determine a sort of mathematical law that connects the choice of
operator Int to the form of operator UF and so to the initial problem. We hope in this way to
be able to define a general method for automatic quantum programming.
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In  table 2 we report the values of the different parameters in the prototype of fig.1 for every
one of the algorithms discussed in this paper:

NAME ALGORITHM

GATE SYMBOLIC FORM:

( ) { 









⊗⋅












⋅⊗

+

4342143421
ionSuperposit

mn

h

nglementEnta

F

ceInterferen

m SHUIInt

1

Deutsch-Jozsa

• 1=m
• HS = ( 1=x )
• HInt n=
• 1=k
• 0=h

( ) ( )HUIH n
F

n 1+⋅⋅⊗

Simon

• nm =
• IS = ( 0=x )
• HInt n=
• ( )nOk =
• 0=h

( ) ( )IHUIH nn
F

nn ⊗⋅⋅⊗

Shor

• nm =
• IS = ( 0=x )
• nQFTInt =
• ( )( )nPolyOk =
• 0=h

( ) ( )IHUIQFT nn
F

n
n ⊗⋅⋅⊗

Grover

• 1=m
• HS = ( 1=x )
• nDInt =
• 1=k
• ( )2/2nOh =

( ) ( )HUID n
Fn

1+⋅⋅⊗

Table 2 : Parameters for Quantum Algorithms
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Conclusions

1. The methodology of quantum algorithm design based on R&D of quantum gates is
represented.

2. The benchmarks of quantum gates for Deutsch’s, Deutsch-Jozsa’s, Simon’s, Shor’s, and
Grover`s algorithms in general form (Part 7–Tab.2) are described.

3. The roles of quantum operators as superposition, entanglement and interference on
coherent states are discussed.
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