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Abstract
We consider the main ideas and the peculiarities of

Quantum Soft Computing tools as a new paradigm
of computational intelligence and simulation control
processes. Applied Quantum Soft Computing (as a
tool and background for robust intelligent control
design technology) is discussed. We discuss any im-
portant applications (as examples, quantum games
and decision-making control processes in quantum
uncertainty of information) of this tool in AI-
systems.

1. Introduction

We consider the application of the quantum algo-
rithm gate (QAG)-design approach to the classical
efficient simulation of quantum games. Games theory
is an important branch of economics systems (for ex-
ample, problems of financial market and global strat-
egy of innovations), social systems, applied mathemat-
ics, communications and information transmission,
and AI-control systems. It is the theory of decision-
making and conflict between different intelligent
agents. There are many paradoxes and unsolved prob-
lems associated with quantum information and the
study of quantum game theory is a useful tool to ex-
plore this area [1-6]. In the area of quantum commu-
nication, optimal quantum eavesdropping can be
treated as a strategic game with the goal of extracting
maximal information. For example, the important
Benchmarks of quantum computing and information
processing as dense coding and teleportation problems
can be decided as quantum game models [1]. Using
Benchmark’s method, different quantum paradigms
and methods of AI (on examples from quantum
games) are demonstrated. And their applications in
problem solution of theoretical informatics (TI) and
computer science (Grover’s QAG) to design of intelli-
gent robust control systems of essentially non-linear
dynamic control objects (intelligent robotics and
mechatronics) based on Quantum Soft Computing
models can be described. We will study in next step

(using described approach and introductory overview)
a new problem in applied intelligent control system:
design of a wise robust control using non-robust par-
ticular knowledge bases (KB). This problem is corre-
lated with the solution of Parrondo quantum game. It
is possible to design a wise robust control from non-
robust KB’s using quantum computing without entan-
glement. This approach differs from the methods of
quantum games where the entanglement is played the
key role.

2. Quantum computing and quantum in-
formation processing in AI-systems: quan-
tum game gates approach

We discuss seven (with different physical contents)
examples: (i) the Prisoner’s Dilemma with quantum
rules; (ii) the Trucker’s quantum games; (iii) the
Quantum Monty Hall Problem; (iv) the Parrondo’s
quantum game; (v) the Card game (entanglement-free
game); (vi) Quantum random walk on a finite lattice;
and a collective game (vii) Master and pupil - as intel-
ligent models of QAG-computation and quantum
communication. Table 1 shows the quantum gates of
these quantum games. Some examples of simulation
and particular properties of quantum gates from Table
1 below are discussed.

Definitions of quantum game theory and quantum
strategies. Any quantum system, which can be ma-
nipulated by two parties or more and where the utility
of the moves can be reasonably quantified, may be
conceived as a quantum game [1].

For example, a two-player quantum game

 , , , ,$ ,$A B A BS S   is completely specified

by the underlying. Hilbert space  of the physical

system, the initial state     , where   

is the associated state space, the set AS and BS of

permissible quantum operations of the two players,
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Table 1: Quantum gates of quantum games

Game Title Quantum algorithm gate (QAG)

1
Prisoner’s
Dilemma
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3
Quantum

Monty Hall
Problem [4]

   ˆ ˆ ˆˆ ˆ ˆcos sinMH l
fin in inG S N O I B A         , ˆN̂ S  ,

, , , , , , , ,

ˆ ˆ,ijk ij
i j k j i j k i j

O njk jk mjj jj S i k ijk iij iij       
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   ,

   1, , 1 mod3, mod3ijk if i j k m j n i          , 0,
2
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Paradox [5]  ˆ ˆ ˆ ˆˆ ˆ,Par n
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and the utility functions $A and $B , which specify

the utility for each player. A quantum strategy

,A A B Bs s   is a quantum operation, that is, a

completely positive trace-preserved (CPTP) map
mapping the state space on itself. The quantum game’s
definition also includes certain implicit rules, such as
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the order of the implementation of the respective
quantum strategies. Rules also exclude certain actions,
as the alteration of the payoff during the game.

Remark. Many quantum game’s models can be
cast into this form. As an example, consider the zero-
sum game. A quantum game is called a zero-sum
game, if expected payoffs sum up to zero for all pairs

of strategies, that is, if    $ , $ ,A A B B A Bs s s s  for

all ,A A B Bs s   . Otherwise, it is called a non-

zero sum game. It is natural to call two strategies of A

As and As equivalent, if    $ , $ ,A A B A A Bs s s s

and    $ , $ ,B A B B A Bs s s s for all possible Bs .

That is, if As and As yields the same expected payoff

for both players for all allowed strategies of B. In the

same way strategies Bs and Bs of B will be identified.

A solution concept provides advice to the players with
respect to the action they should take.

According to QAG approach in Table 1 the quan-
tum game can be proceeds as follows.

1.

Starting with a particular initial superposition

v , create the entangled state Ĵv , where Ĵ is
the entanglement operator that communicates
with the classical single-player operators

2.

Players select an operation to apply to their
part of the superposition, giving

 1
ˆ

nv U U J v    where kU is

operator used by player k

3.

Finally undo the initial entanglement, giving
†Ĵ v  . For a given game, i.e., choice for

v and Ĵ , the final superposition is a func-
tion of the player’s choices, i.e.,

 1, , nU U 

4.
Measure the state, giving a specific value for
each player’s choice. The probability to pro-
duce choices s (i.e., a particular assignment,

0 or 1, to each bit) is
2

s

The following solution concepts are fully analogous
to corresponding definitions in standard game theory
and will be used.

Definition: A quantum strategy As is called a

dominant strategy of A if

   $ , $ ,A A B A A Bs s s s  

for all ,A A B Bs s    . Analogously we can

define a dominant strategy for B. A pair  ,A Bs s

is said to be an equilibrium in dominant strategies if

As and Bs are the player’s respective dominant

strategies. A combination of strategies  ,A Bs s is

called a Nash equilibrium if

   $ , $ ,A A B A A Bs s s s    $ , $ ,B A B B A Bs s s s

for all ,A A B Bs s    . A pair of strategies

 ,A Bs s is called Pareto optimal, if it is not possi-

ble to increase one player’s payoff without lessen-
ing the payoff of the other player.

Remark. In the quantum game it is only the expec-
tation values of the player’s payoffs that are impor-
tant. For A (B) we can write as follows:

1 2

( )
, 0

$
N

A B i j fin
i j

P ij




  , where i jP is the payoff

for A (B) associated with the game outcome

 ; , 0,1i j i j .

A solution in dominant strategies is the strongest
solution concept for a non-zero sum game. In the Pris-
oner’s Dilemma (see below) defection is the dominant
strategy, as it is favorable regardless what strategy the
other party picks. Typically, however, the optimal
strategy depends on the strategy chosen by the other
party. Nash equilibrium (NE) implies that neither
player has a motivation to unilaterally after his/her
strategy from this equilibrium solution, as this action
will lessen his/her payoff. Given that the other player
will stick to the strategy corresponding to the equilib-
rium, the best result is achieved by also playing the
equilibrium solution. The concept of NE is of para-
mount importance to studies of non-zero-sum games
with exchange of information between players [8].

Remark. In classical game theory, the player coop-
eration means that they can completely exchange in-
formation with one another, and they take the strategy
to the most be hoof of themselves. In this way, co-
operators can be seen as one player. It is very impor-
tant in cooperative game that each party in coopera-
tion must take coordinated strategies. For this pur-
pose, in game theory, NE is an important concept. In a
NE, each player obtains his/her payoff, and if he/she
tries to change his/her strategy from the NE strategy,
his/her payoff will become less. In cooperative quan-
tum game, the situation is similar. Remark. It is, how-
ever, only an acceptable solution concept if the Nash
equilibrium is unique. For games with multiple equi-
libria the application of a hierarchy of natural refine-
ment concepts may finally eliminate all but one of the
NE [8]. Note that NE is not necessarily efficient. In
the Prisoner’s Dilemma, for example, there is a unique
equilibrium, but it is not Pareto optimal, meaning that
there is another outcome, which would make both
players better off.
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Game 1: The Prisoner’s dilemma with quantum
rules. Let us briefly recall the quantum Prisoner’s Di-
lemma presented in [1,2]. Game theory does not ex-
plicitly concern itself with how the information is
transmitted once a decision is taken. In the Prisoner’s
Dilemma, the two parties have to communicate with
an advocate by talking to her or by writing a short
letter on which the decision is indicated. By classical
means a two players choice game may be played as
follows. An arbiter takes two coins and forwards one
coin each to the players. The players then receive their
coin with head up and may keep it as it is (“cooper-
ate”) or turn it upside down so that tails is up (“defec-
tion”). Both players then return the coins to the arbiter
who calculates the player’s final pay-off correspond-
ing to the combination of strategies he obtains from
the players. Here, the coins serve as the physical car-
rier of information in the game. In quantum version of
such a game quantum systems would be used as such
carriers of information. For a binary choice two play-
ers game an implementation making use of minimal
resources involves two qubits as physical carriers.

There are two players have two possible strategies:

cooperate  ˆ 0C  and defect  ˆ 1D  . The

payoff table for the players is shown in Table 2, with
suggestive names for the strategies and payoffs (the

case 3, 5, 0, 1r t s p    in [1, 2] is studied).

Table 2: The general form of the Prisoner’s Dilemma
payoffs

Player Strategy Bob (B): Ĉ Bob (B): D̂

Alice (A): Ĉ  ,r r  ,s t

Alice (A): D̂  ,t s  ,p p

The first entry in the parenthesis denotes the payoff
of A and the second number the payoff of B. The en-
tries in this table satisfy conditions: t r p s   .

The meaning of the symbols in the Table 2 is as fol-

lows: C  cooperative; D  defect; r  reward;
p  punishment; t  temptation; s  sucker’s payoff.

Classically the dominant strategy for both players is to
defect (the NE) since no player can improve his/her
payoff by unilaterally changing his or her own strat-
egy, even though the Pareto optimal is for both play-
ers to cooperate. The condition t r p s   guar-

antees that the strategy D̂ dominates strategy Ĉ for
both players, and that the unique equilibrium at

 ˆ ˆ,D D is Pareto inferior to  ˆ ˆ,C C . This is the formal

description of the dilemma.
Example: Physical interpretation of formal Pris-

oner’s Dilemma model. Let us consider the case

3, 5, 0, 1r t s p    . The name of the Pris-

oner’s Dilemma arises from the following scenario
[2]: two burglars, A and B are caught by the police
and are interrogated in separate cells, without no
communication between them. Unfortunately, the po-
lice lacks enough admissible evidence to get a jury to
convict. The chief inspector now makes the following
offer to each prisoner: If one of them confess to the
robbery, but the other does not, then the former will
get unit reward of 5 units and the latter will get noth-
ing. If both of them confess, then each get 1 unit as a
reward. If neither of them confess, then each will get
payoff 3. Since confession means a “defect” strategy
and no confession means “cooperate” with the other
player, the classical strategies of the players are thus
denote by “D” and “C”, respectively. Table 2 indi-
cates the payoffs of A and B according to their strate-

gies. From Table 2, we see that the strategy D̂ is the
dominant strategy in the game. Since the players are
rational and care only about their individual payoffs,

both of them will resort to the dominant strategy D̂
and get payoffs 1p  . In terms of the game theory,

 ˆ ˆ,D D is the dominant strategies equilibrium of the

game. However, this dominant strategy equilibrium is

inferior to the Pareto optimal  ˆ ˆ,C C , which yields

payoffs 3r  to each player’s. This is the catch of
the Prisoner’s Dilemma.

Remark: Analysis of scenario of the Prisoner’s di-
lemma. This dilemma is the classical example of non-
zero sum game in economics, political science, evolu-
tionary biology, and itself of game theory. A zero sum
game is simply a win-lose game. For every turn, as
abovementioned the expected payoffs for both players

are sum to zero:    $ , $ ,A A B B A Bs s s s  for all

,A A B Bs s   . However, in a non-zero sum

game two players no longer appear in strict opposition
to each other, but may rather benefit from mutual co-
operation. This is what makes these games with non-
zero sum interesting. In the Prisoner’s Dilemma, two
players, A and B, are pocked up by the police and
interrogated in separate cells without a chance to
communicate with each other. For the purpose of this
game, it makes no difference whether or not A or B
actually committed the crime. The players are told the
same thing: If they both choose strategy D (defect),
they will both get payoff p ; if the players both resort

to strategy C (cooperate), they will both payoff r ; if
one of the players choose D but the other does not, t
is payoff for the former and s to the latter (see Table
2). In accordance with the abovementioned Definition

a strategy As can be dominant one of A if it satisfies

   $ , $ ,A A B A A Bs s s s  for all ,A A B Bs s   .

Similarly, we can define a dominant strategy Bs for
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the player B. In terms of game theory and abovemen-

tioned Definitions, a strategy profile  ,A Bs s 
can be

called a NE if    $ , $ ,A A B A A Bs s s s   ,

   $ , $ ,B A B B A Bs s s s   for all ,A A B Bs s   .

A NE implies that no players can increase his payoff
by unilaterally changing his strategy. A profile

 ,A Bs s 
can be called a Pareto optimal, if it is not

possible to increase one player’s payoff without less-
ening the payoff of the other player. A Pareto optimal
is a most efficient strategy profile. From the payoff
table we can see that D is the dominant strategy for
both players, i.e., each rational player will choose D
as his best strategy against his opponent. In addition,
mutual defection is a NE. Since the aim of the player
is to maximize his own payoff, A and B will both stick
to choosing D. But unfortunately, this situation is
worse than when they both choose C, which happens
to be a Pareto optimal. That the NE strategy is not
equivalent to the Pareto optimal is the catch of the
dilemma in this game.

Example: Quantum game of two-person Prisoner’s
Dilemma. Using the abovementioned gate design
method of QA’s, the quantum gate of the physical
model of the quantum Prisoner’s dilemma (originally
proposed by J. Eisert et all [1]) is shown in Figure 1.

Figure 1: The gate model for the player quantum
Prisoners’ Dilemma

Together with the payoff table for the general Pris-
oner’s Dilemma, the scheme can represent the quan-
tum gate of generalized quantum Prisoner’s Dilemma
described as the following:

 †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆPrDl
fin A BG CC J U U J CC    (2.1)

In this scheme the game has two qubits, one for each
player. The possible outcomes of the classical strate-

gies D and C are assigned to two bases D and

C in the Hilbert space of a qubit. Hence, a state of

game at each instance is described by a vector in the
tensor product space, which is spanned by the classi-
cal game basis as following:  , , ,CC CD DC DD .

In the quantum version (see, Figure 1), one starts with

the product state C C . One then acts on the state

with entangled operator Ĵ to obtain the initial state of

the game as the following:

 1ˆ
2

in J CC CC i DD    , where Ĵ is a

unitary operator, which is known to both players. Stra-
tegic moves of A and B is associated with unitary op-

erators ˆ
AU and ˆ

BU respectively, which are chosen

from a strategic space  . The players now act with

local operators ˆ
AU and ˆ

BU on their qubit. Finally,

the disentangled operator
†Ĵ is carried out and at the

final stage; the state of the game is described by Eq.
(2.1). The system is measured in the computational
basis, giving rise to one of the four outcomes

, ,CC CD DC and DD , where the first and sec-

ond entries refer to A’s and B’s qubits, respectively.
The subsequent measurement yields a particular result
and the expect payoffs of the players are given by:

$

$
A CC DD DC CD

B CC DD DC CD

rP pP tP sP

rP pP sP tP

   


   
,

where   
2

, ,finP C D      is the

probability that fin collapsed into basis  . If

ˆ
AU and ˆ

BU are restricted to the classical strategy

space  ˆ ˆ ˆ ˆ, yC I D i  , one then recovers the clas-

sical game. We can see that expected payoff, for ex-

ample, A’s  $A , not only depends on her choice of

strategies ˆ
AU , but also on B’s choice ˆ

BU .

Remark. The board of the quantum game is de-
picted in Figure 1. It can be in fact considered a sim-
ple quantum network with sources, reversible one-bit
and two-bit gates, and sinks. The complexity is mini-
mal in this implementation as the players’ decisions
are encoded in dichotomic variables. The quantum
game, described by the Eq. (2.1) can be classically
efficient simulated using quantum gate approach. Dif-
ferent from the classical game, each player has a qubit
and can manipulate it independently (locally) in the
quantum version of this game. The quantum formula-
tion proceeds by assigning the possible outcomes of

the classical strategies C and D the two vectors of a

qubit as 0C C  and 1D D  , respec-

tively. To be specific, the strategy “cooperate” can be
associated with the operator,

 
1 0ˆ ˆ ˆ0,0
0 1

C U I
 

   
 

, while the strategy “defect”

is associated with a spin flip,

 
0 1ˆ ˆ , 0
1 0

D U 
 

   
 

.
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In order to guarantee that the ordinary Prisoner’s
Dilemma is faithfully represented, it is impose the
subsidiary commutation conditions

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0J D D J D C J C D              
. (2.2)

These conditions, together with the identification
†ˆJ J , imply that, for any pair of strategies taken

from the subset     0
ˆ ,0 0,U     , the joint

probability P factorize,    
A BP P P
 

  , where

  2cos
2

C
p


 and    1 21 sin

2

D
p p


   . Identi-

fying
 Cp with the individual preference to cooper-

ate, we observe that the conditions in Eq. (2.2) in fact
ensures that the quantum Prisoner’s Dilemma entails a
faithful representation of the most general classical
Prisoner’s Dilemma, where each player uses a biased
coin in order to decide whether he or her chooses to
cooperate or to defect. Probabilistic strategies of this
type are called mixed strategies in game theory.
The solution of these conditions (as factoring out Abe-
lian subgroup which yield nothing but a re-
parametrization of the quantum sector of the strategic

space  ) is given as the following:
1ˆ ˆ ˆexp
2

J i D D
 

  
 

,
0,

2




 
  

. (2.3)

A real parameter  is a measure for the game’s

entanglement and the gate (2.3) can be considered as
the gate, which produces entanglement between the
two qubits.

Remark. The game started from the pure state

C C . After passing through the gate Ĵ as (2.3),

the game’s initial state is

ˆ cos sin
2 2

in J CC CC i DD
 

    .

Since the entropy (entanglement measure) of
in is

2 2 2 2sin ln sin cos ln cos
2 2 2 2

S
      

     
   

the parame-

ter  can be reasonably considered as a measure of

the game’s entanglement [2]. The game’s initial state

denotes by
0 Ĵ CC  , where Ĵ is a unitary op-

erator which is known to both players. For fair games,

Ĵ must be symmetric with respect to the interchange
of the two players. The strategies are executed on the

distributed pair of qubits in the state 0 .

Strategies moves of A and B are associated with

unitary operators ˆ
AU and ˆ

BU , respectively, which are

chosen from a strategic space  . The independence of
the players dictates that ˆ

AU and ˆ
BU can be operated

exclusively on the qubits in A’s and B’s possession,

respectively. The strategic space  may therefore be
identified with some subset of the group of unitary

2 2 matrices. It proves to be sufficient to restrict the

strategic space  to the 2-parameter set of unitary

2 2 matrices.
If one allows quantum strategies of the form:

 
cos sin

2 2ˆ ,

sin cos
2 2

i

i

e

U

e





 

 
 

 
 

  
  
 

, (2.4)

with 0    and 0
2


  , then there exists a new

NE, labeled ˆ ˆQ Q , with the payoff 3r  as (3,3). It

has the property of being Pareto optimal, therefore the
dilemma that exists in the classical game is resolved.
If one allows any local operations, then there is no
longer a unique NE.

At the beginning of the game the quantum-game

qubits C C go through an entangling gate J .

After the action of both players and another
†J , the

final state
fin is a superposition. Measurement will

make the final state collapse to one of classical out-
come and the payoff is returned according to the cor-
responding entry of the payoff Table 2.
Example. This situation was investigated in [1,2]. For

a separable game with 0  , there exists a pair of

quantum strategies ˆ ˆD D , 0 1ˆ
1 0

D
 

  
 

which is the

NE and yields payoff (1,1). Indeed, this quantum
game behaves “classically”, i.e. the NE for the game
and the final payoffs for the players are the same as in
the classical game. So the separable game does not
display any features, which go beyond the classical
game. For a maximally entangled quantum game with

2


  , there exists a pair of strategies

0ˆ ˆ ˆ,
0

i
Q Q Q

i

 
   

 

, which is a NE and payoff (3,3),

having the property to be Pareto optimal. Therefore
the dilemma that exists in the classical game is re-

moved. If  is varied from 0 (no entanglement) to
2



(maximally entanglement) then, namely, the quantum

game has two thresholds,
1

1
arcsin

5
th  and

2

2
arcsin

5
th  . For

10 th   , the quantum game

behaves “classically,” i.e., the only NE is ˆ ˆD D and
the payoffs for the players are both 1, which is the
same as in classical game. The equilibrium ˆ ˆD D is
no longer a NE because each player can improve
his/her payoff by unilaterally from the strategy D̂ .
However, two new NE ˆ ˆQ D and ˆD̂ Q appear. This

feature holds for 1 2th th    . In this regime the

quantum game does not resolve the dilemma and this
domain can be considered as the transitional phase
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from classical to quantum. But for
2th  quantum

strategies resolve the dilemma [2]. For
2

2
th


   ,

a novel NE ˆ ˆQ Q appears with payoff ( 3, 3r r  ).

This strategic profile has the property to be Pareto
optimal and hence the dilemma disappears, and this
domain can be considered as the quantum phase.

Thus, in quantum game NE does not always exist
which is totally different from that in classical game.
This happens only when initial state is in entangled
state. At the same time, when NE exists the payoff
function is usually different from that in the classical
counterpart except for some special cases.

Remark. As abovementioned, in classical game,
NE can be obtained by mixed strategies, where player
A chooses his two strategies with equal probability.
His payoff is zero. Similarly, payoff for the mixed
strategy of player B is zero too. In quantum game, the
players take their strategies by changing the quantum
state of the game machine using a unitary operation. A
general unitary transformation can be written as [9]

 
2

2

cos sin
0 2 2ˆ ,

sin cos0
2 2

i

i

e
U

e





 

 
 


     

   
       

, (2.5)

or restrict into the following unitary transformation

 ˆ , 1 xU pI i p     , where by changing the

parameter p , we can take different strategies. For

player A, he can choose in principle any operation in

the  3U group. But it is possible set some restric-

tions, which corresponds to different rules of the
game. For instance, in three-dimensional space, the
following unitary operation

     3

cos sin 0 cos 0 sin cos sin 0

sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1

z z zU R R R  

     

   

 

 

    
   
   
      

,
will be one choice. However, this restricted unitary
operator is still very complicated because it contains
three parameters. It is require the unitary operation to
depend on only one parameter.
Remark. Furthermore, the operator can make superpo-
sition of all the pure strategies, which is possible in
quantum game, but is not possible in classical game.
The purpose is to see the effects that brings about by a
quantum game machine.
The following operator [9]:

 3

0 1 1
1 1 1

1 exp , arccos , 1 0 1
2 2 2

1 1 0

q
U qI q i M M

q
 

 
   

        
   

 

is unitary and can produce a superposition of the vari-
ous strategies. By choosing a different q , B chooses

different strategies.

Remark. The classical pure strategies correspond

to the identity operator Î and the bit flip operator
0ˆ ˆ

0
x

i
F i

i


 
   

 

. Without loss of generality, an entan-

gling operator  Ĵ  for an N -player game with two

pure classical strategies (an 2N  game) may be
written [5,10] as

 ˆ ˆˆ ˆexp cos sin
2 2 2

N N N
x xJ i I i

  
     

   
 

,

where 0, ,
2 2

 
 

 
   

corresponding to maxi-

mum entanglement. That is

 1ˆ 00 0 00 0 11 1
2 2

J i
 

  
 

   .

A pure quantum strategy  ˆ , ,U    is an  2SU opera-

tor and may be written as

 
cos sin

2 2ˆ , ,

sin cos
2 2

i i

i i

e ie

U

ie e

 

 

 

  
  

 
 

  
 
 
 

,

where  0,  and  , ,     . A classical

mixed strategy can be simulated in the quantum game
protocol by an operator in the set    ˆ , 0,0U U  .

Such a strategy corresponds to playing Î with prob-

ability 2cos
2

 and F̂ with probability 2sin
2


. Where

both players use such strategies the game is equivalent
to the classical game.
Example. In the case of the three players (see Figure
2), without loss of generality [10], we can take

  3 3ˆ ˆ ˆ ˆ ˆ1/ 2 , xJ I iF F      
,

and the input state 0 0 0 000   becomes

 1/ 2 000 111i   
.

Figure 2: The set-up gate of three-player quantum games

For this case the similar analysis of quantum game in
[2] is described. In general, players are allowed to
apply operator to their qubit(s). We can consider gen-
eral single-qubit operators, given by [9]
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 
cos sin

2 2ˆ , ,

sin cos
2 2

i i

i i

e e

U

e e

 

 

 

  
  

 
 

  
  
 

(2.6)

up to an irrelevant overall phase factor. For 2n  ,
this reduced to Eq. (2.4). Entangled states allow
player 1 to affect the final outcome produced by the
action of player 2 and vice versa. Whether an equilib-
rium exists, and if so whether it is unique and gives
the optimum payoffs for the players, depends on the
set of allowed operations in quantum gate, the amount
and type of entanglement (specified by the choice of

Ĵ ) and the nature of the payoffs.
We can describe three types of entanglement [9]: (1)
Full entanglement; (2) Two-particle entanglement; and
(3) Two-particle entanglement with neighbors.
In first case, a conceptually simple approach allows
arbitrary entanglement among the player’s qubits. As
one example, consider fully entangled states. The ini-

tial entanglement matrix:    1/ 2 n n
n xJ I i   ,

where the product in the second term consists of

n factors of 0 1

1 0
x

 
  
 

, the 2 2 Pauli matrix.

Allowing general single-bit operators of Eq. (2.5), we
can find no pure strategy NE for the players. How-
ever, there are a variety of mixed strategy equilibria.
As one example, let in Eq. (2.6) as follows:

     
1 0 1 0

0 0,0,0 , 1 0, ,0
0 1 0 12

u U u U
    

       
    

.

Note  0u corresponds to the classical “cooperate”

operation. A mixed strategy consisting of each player

randomly selecting  0u or  1u , each with probabil-

ity ½, gives expected payoff  1 / 2a where a is a

parameter. This is equilibrium if any one player
switches to using a different operator, or different
operator’s mixture, the expected payoff for that player
remains equal to  1 / 2a . While this payoff is less

than the efficient outcome, it is substantially better
than the classical outcome with payoff of 1 since all
choose to defect. Full entanglement is difficult to im-
plement as n increases, particularly for qubits com-
municated over long distance. Thus in second case we
consider restricting entanglement to only pairs of
qubits. In this case, we suppose each pair of players
has a maximally entangled pair, so each player has

1n qubits. The entanglement matrix for a case con-

sisting of
2

n
N

 
  
 

pairs is   2
n

pairJ N J  with the

product consisting of N factors of the entanglement

operator
nJ for the case 2n  , i.e., full entanglement

among two qubits. Two-particle entanglement among
all possible pairs of players requires  1 / 2n n entan-

gled pairs. If we consider the players in some arbitrary

order and only provide an entangled pair between
successive players in that order (with additional pair
between the first and last) then this entanglement re-
quires only 2n qubits, i.e., the case (3) [9].

Quantum game of three-person Prisoner’s Dilemma.
In the case of three players from Table 1 (Game1) the
entangled three particles have two different types of
state: W-state and Greenberger-Horne-Zeilinger
(GHZ) state. When we introduce entanglement to
three-person Prisoner’s dilemma, it is found in [11]
that if the initial state is W-state, the players prefer to
form a three-person coalition, which can gain the larg-
est payoffs for every player. It is also found that the
players prefer to form a two-person coalition and the
members of the coalition will gain larger payoffs than
the third person if the initial state is GHZ state. From
this quantum game it can clearly to see the difference
between W-state and GHZ-state. The GHZ-state is
described as following entangled state:

 1

2
GHZ DDD CCC  .

And W-state is described as following:

 1

3
W CDD DCD DDC   . It is two different

types of states, which cannot be transformed to each
other under local operations and classical transforma-
tion in three parties system [12] (see Appendix be-
low). The main differences between these two states
are that every two particle in W-state have some en-
tanglement while in GHZ-state have not, and three-
particle entanglement in GHZ-state is stronger than in
W-state. When we introduce cooperation into the
game, in the classical case it only can form a two-
person coalition, that is, it is impossible to form a
three-person coalition. When the initial state is W-
state, the three persons will prefer to form a three-
person coalition, which can gain the largest payoffs
for each player. When the initial state is GHZ-state, it
is unnecessary to form a three-person coalition. But a
two-person coalition is inescapable: the players prefer
to form a two-person coalition that the members of the
coalition will gain larger payoffs than the third person.
When the three parties are not entangled, they also
prefer to form a two-person coalition, but the third
person will gain more payoffs than any members of
the coalition.
Classical case. In classical term, the game is de-
scribed as follows: there are three players in this
game, their strategies are  ,C D . Each 3-triplet stands

payoffs of players, respectively, while they use the
corresponding strategies. The three persons are sym-
metric and D is the dominant strategy for all of the
three players. So the unique equilibrium is DDD ,
however, there is another strategy CCC would be
better for all of the three persons. When two persons
are form a coalition it is found that the strategies

DCD and DDC are saddle points. Obviously, it is
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better to be in a two-person coalition than to be an
individual player.
Quantum case. For this case there are still three play-
ers. There is a source of three bits, with each bit for

each player. The strategic space is  , , ,x y zI    .

The initial state is produced by the operation Ĵ . So
the initial state is Ĵ CCC . Since any player of this

game uses the strategy
x or y , they get the same

payoffs, so x and y are equal in this situation.

Similarly, strategy I is equal to strategy z . So we

only consider two different types of strategy: I and

x .

1. When the initial state is W-state:

 1

3
W CDD DCD DDC   and there is no co-

operation in the game, this game is still a dilemma

game. Obviously, I is the dominant strategy for all of
the players, so  , ,I I I is an equilibrium. The payoffs

are strongly larger than the classical game’s equilib-
rium. But there is another point whose payoffs are
larger than the saddle point for all of the players. One
may guess that when we introduce cooperation into
this game, the payoffs of these players will be in-
creased. It is not completely true. The two-person
coalition gains much more payoffs than classical two-
person coalition. But there is still another point, which
can make the payoffs larger than the saddle point for
all of the players. On the other hand, we can find the
payoffs of the three persons at the saddle point are the
same as the payoffs of the no-cooperation situation,
that is, it cannot gain larger payoffs from two-person
coalition. But if there exists a three-person coalition,
they get more payoffs with everyone agreeing to play

x . This means the W-state encourages three persons

to cooperate together while the classical game only
encourages form a two-person coalition.

2. When the initial state is GHZ-state:

 1

2
GHZ DDD CCC  and there is no coopera-

tion among these players. It is found that this game is
no longer a dilemma game [11]. The 3-tuples as

     , , , , , , , ,x x x xI I I I I    and

     , , , , , , , ,x x x x xI I I I     are equilibria points. The

payoffs of these points are larger than the classical
also. When we introduce a two-person coalition to this
game, the payoffs matrix has the equilibria points as

 , ,x I I and  , ,x x I  . Also it can be found that the

payoff of one player is less than the payoffs of classi-
cal two-person coalition. But the coalition gains much
more payoffs than the classical one. At the same time,
the coalition members gain of two-person more pay-
offs than non-cooperative case. With this payoffs ma-

trix, we can also say there is no necessary to form a
three-person coalition.

We can see that when the initial state is W-state,
the players prefer to form a three-person coalition,
which can gain the largest payoffs for each player. If
the initial state is GHZ-state, the players prefer to
form a two-person coalition and the members of the
coalition will gain larger payoffs than the third person.
When the three parties are not entangled, they also
prefer to form a two-person coalition, but the third
person will gain more payoffs than any members of
the coalition.

Remark. From physical point of view GHZ-state
has strong three-party entanglement. When initial state
is GHZ-state, the strong “cooperation” has been al-
ready introduced into this game. So for this situation,
the two-person cooperation is a new correlation,
which can bring some new results. But the three-
person cooperation does not introduce any new corre-
lation to this game, so three-person coalition is not
better than two-person coalition in this game. When
the initial state is W-state, we also know that there is
some entanglement in any of the two parties. So when
we introduce a two-person coalition to this game,
there is no new correlation added and the payoffs of
any players in this situation are not better than in no-
two-person coalition case. When a three-person coali-
tion is introduced, there is something new and the
payoffs of the members in the coalition are increased.

Game 2: The Trucker’s quantum game [3]. In this

game in general case N truckers are planning to go

to city B from city A. There are N roads connecting
the two cities and all of them are assumed to have the
same length. Since none of the trucker’s choices, so
each of them can only choose his way randomly. The
payoff for a certain trucker depends on how many
truckers choose the same road as he/she does. The
more truckers who choose the same road, the less pay-
off this certain trucker obtains. If all of them choose
the same road, the outcome is the worst because of the
possible traffic jamming. The probability of this situa-

tion is /Cl N
worstP N N , the superscript Cl denotes

the classical condition. On the contrary, if they all
choose different roads, the probability outcome is the
best because there will be no traffic jamming. The

probability of this situation is !/Cl N
bestP N N . It is

obvious that, in order to avoid the worst outcome, the
truckers will do their best to avoid choosing the same
road. Since they cannot obtain information from each
other, the worst outcome will occur with certain prob-

ability /Cl N
worstP N N . If we quantize this game, the

truckers can definitely avoid the worst outcome by
implementing quantum strategies (without knowing
what the other truckers choose). The quantum gate of
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this physical model for described situation is given in
Figure 3.
The QAG is described as following:

    ˆ 00fin inH H H H J     .

Figure 3: The set-up gate of the two-trucker game

We send each player a classical 2-state system in the
zero state. The input state is 00 . Strategies of truck-

ers are ˆ
AU and ˆ

BU . The gate
2

1 11

1 12
H

 
  

 

. The

state after operator Ĵ is the entangled state

 1
00 11

2
in   . So, for ˆ ˆ

A BU U H  ,

where H is Hadamard transformation, the output is

 1
01 10

2
fin   . From

fin we can see that the

two truckers are definitely in different roads. So the
probability of the best outcome is 1 and the worst
situation of classical case is removed. This is the re-
sult that the truckers want.
Remark. A QFT-gate is used for to entangle the initial
state, which is the state sent to the N-truckers. In some
cases, the truckers want to guarantee that the pay-off
they can at least obtain is better that that when they all
choose the same way; the parameter p can be used

for the choice of the player payoffs:

if 1p  , then
1

1

0

1 N
k

in N
k

k k k
N

 






   .

Hence,

0 1

1 1

0

1
N

N N
k m

j j N
k

C
N




 




 
  
 


,  0 1 1Nm j j p     .

If
0 1 1Nj j j j   (for which the outcome is the

worst) then the coefficient of j j j is

 
1 1

1

0

1
0

N N
k jN

jj j N
k

C
N


 

 



 
  
 


.

So the worst situation will never appear and the payoff
of truckers is guaranteed. For this case we see that the
worst situation will not occur. The pay-off that the
truckers can at least obtain can be definitely better
than that of the worst outcome. If the truckers want to
increase the probability of the occurrence of the best

outcome, the parameter can be set as  1

2

N N
p




and the probability of the best outcome can be in-
creased. So

 11
2

0

1
N NN k

in N
k

kk k
N

 
 



   .

While 0 1 1, , , Nj j j  are different from each other,

there is only one truck in one road and the situation is
the best. The probability of this circumstance is

2

01 1

!
!Q Cl

best N bestN

N
P N C N N P

N
     

, i.e., the

quantum probability is N times higher than the clas-
sical one. Since the coefficient

0 1Nj jC


is either

/ NN N or 0, and the square norm of the coefficient

is the probability that the final state (after being meas-
urement) collapses into the corresponding basis, so the

probability of the result is
2

/ N
fin N N  , which is N

times higher than in the classical game, or just 0.
Whether the probability is 0 or not depends on both
the basis and the initial state of the game [3]. Unlike
the classical game, in the quantum game by setting
different values of parameter p, truckers can always
meet their various needs, removing the worst outcome
to occur, without knowing the choice of other truck-
ers.

Game 3: Quantum Monty Hall problem. We discuss
the Monty hall problem where the players are permit-
ted to select quantum strategies [4]. It has been sug-
gested that a quantum version of Monty Hall problem
may be of interest in the study of quantum strategies
of quantum measurement [13].
Classical Monty Hall problem. The player A (“Al-
ice”) is the banker and can secretly selects one door of
three behind which to place a prize (a car). The player
B (“Bob“) picks a door. A then opens a different door
showing that the prize is not behind it. B now has the
option of sticking with his current selection or chang-
ing to the untouched door. Classically, the optimum
strategy for B is to alter his choice of door and this,
surprisingly, doubles his change of winning the prize
from (1/3) to (2/3).
Remark. The classical Monty Hall problem [14] has
raised much interest because it is sharply counterintui-
tive. Also from an information viewpoint it is illustrate
the case where an apparent null operation does indeed
provide information about the system.
Classical solution: Bayes’s formula approach. Game
show setting: There are three doors, behind one of
which is a prize (car). Monty Hall, the host, asks you
to pick a door, any door. You pick door A (say).
Monty opens door B (say) and shows voila there is
nothing behind door B. Gives you the choice of either
sticking with your original choice of door A, or
switching to door C.
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Question Should you switch?
Answer Yes

From mathematical statistics point of view we are

interested in the following events: iC is the car that at

door 1, 2,3i  ;
jH is the host opens door 1, 2,3j  .

For this case  
1

3
iP C  is a priori probability that

the car is at door i . The host’s choice of which door
to open is made in response to the actual location of

the car. The events iC are the causes that produce the

effects
jH . The probabilities of the effects given the

causes we call the productive probabilities; there are
the conditional probabilities  j iP H C . And  jP H is

a priori probability that the host opens door j .

Bayes’s formula is the fundamental equation relating
the a posteriori to the productive probabilities:

       j i j i j iP H P C H P C P H C ,

where  i jP C H are the conditional probabilities that

describe the a posteriori probabilities of the causes
given the effects.

In our case a priori probability that the car is behind

door H ,  
1

3
P H  . We can calculate the correspond-

ing probabilities in Bayes’s formula as following.

S
t
e
p

Probability computation algorithm

1
The probability that Monty Hall opens door B

if the car were behind A,

  1

2
P Monty opens B A  .

2
The probability that Monty Hall opens door B

if the car were behind B,

  0P Monty opens B B  .

3
The probability that Monty Hall opens door B

if the car were behind C,

  1P Monty opens B C  .

4

The probability that Monty Hall opens door B
is then

 

       
   

P Montyopens B

P A P Montyopens B A P B P Montyopens B B

P C P Montyopens BC



  

 

= 1 1 1
0

6 3 2
  

5

Then, by Bayes’s theorem, we obtain the fol-
lowing:

 P A Monty opens B 

   
 

1/ 6 1

1/ 2 3

P A P Monty opens B A

P Monty opens B


  

6

and

 
   

 
1/ 3 2

1/ 2 3

P C Monty opens B

P C P Monty opens B C

P Monty opens B


  

In other words, the probability that the car is behind
door C is higher when Monty opens door B, and you
should switch, i.e.,

 

   

       
3 2 2 3

2 3 2 3 2 3=

1 1 2
1 1

3 3 3

P you win if you switch

P H C P H C

P C P H C P C P H C

   



    

Physical interpretation of Monty Hall problem. From
physical point of view in the classical case, A may put
the particle in one of some (such as three) boxes and
B picks one box. If he finds the particle in the box, he
wins (suppose one coin), otherwise, he loses one coin.
Obviously, B will not accept this proposal, for he has
definite 2/3 chance to lose. He may argue that after he
chooses one box, A should reveal an empty one from
the other two boxes and then he is provided a chance
to choose between sticking with the original choice
and switching to the third box. Counter-intuitively,
this puts them in a dilemma situation. B can win with
probability 2/3 by choosing to switch. This case is
usually called Monty hall problem. The key point is
that when B selects a box, he has expected 1/3 chance
to win, which will not change anymore. Under the
condition that A reveals an empty box, B may have
2/3 chance to find the particle in the third box. Thus,
in classical Monty Hall problem, one player (B) can
always win with probability 2/3.
Remark. In quantum mechanics an apparent paradox
was proposed by Aharonov and Vaidman [15], in
which a single particle can be found with certainty in
two (or more) boxes what has come to be called the
“Three-box paradox.” It was introduced a post-
selected process which appears to require that each of
two disjoint events occurs with certainty. They discuss
this in terms of a variable whose three values are the
occurrence of a particle within one of three boxes. The
process starts with the particle in a state smeared over
all three boxes and ends with the particle in another,
similarly smeared, state. These states are chosen so
that, if the first of the boxes is opened during the
process, the particle is certain to be found there, while
if the second box is opened, the particle is found
there: the particle is certain to be in the first box, and
the particle is certain to be in the second box.
The quantum version of Monty Hall problem. A quan-
tum version of the Monty Hall problem may be as
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follows: there is one quantum particle and three boxes

0 , 1 , 2 . A selects a superposition of boxes for her

initial placement of the particle and B then selects a
particular box. In this case, it make this a fair game by
introducing an additional particle entangled with the
original one and allowing A to make a quantum meas-
urement on this particle as a part of her strategy [4,5].

Remark. If a suitable measurement is taken after a
box is opened it can have the result of changing the
state of the original particle in such a manner as to
“redistribute” the particle evenly between the other
two boxes. In the original game B has a 2/3 chance of
picking the correct box by altering his choice but with
this change B has ½ probability of being correct by
either staying or switching.
It is possible quantize the original Monty Hall game
directly, with no ancillary particles, and allow the
banker and/or player to access general quantum strate-
gies [4]: A’s and B’s choices are represented by
qutrits and we suppose that they start in some initial
state.
Remark. Qutrit is the three-state generalization of the
term qubit that refers to a two-state system. A third
qutrit is used to represent the box “opened” by A.
That is, the state of the system can be expressed as

oba  , where a is A’s choice of box, b is B’s

choice of box, and o is the box that has been opened.
The initial state of the system shall be designated as

in . The final state of the system is (see Table 1):

   ˆ ˆ ˆˆ ˆ ˆcos sinMHl
fin in inG S N O I B A         ,

where Â is A’s choice operator (or strategy), B̂ is B’s

initial choice operator (or initial strategy), Ô is the

opening box operator, Ŝ is B’s switching operator,

N̂ is B’s not switching operator, Î is the identity

operator, and 0,
2




 
   

. It is necessary for the initial

state to contain a designation for an open box but this
should not be taken literally (it does not make sense in
the context of the game.) We shall assign the initial
state of the open box to be 0 .

Physical meaning of operator Ô . An operator Ô
marks a box (i.e., sets the o qutrits) in such a way that

it is anti-correlated with A’s and B’s choices. Physi-

cally it is mean that we should not consider Ô to be
the literal action of opening a box and inspecting its
contents that would constitute a measurement, but
rather it is an operator that marks a box. The coher-
ence of the system is maintained until the final stage
of determining the payoff. Mathematically, the open

operator Ô is a unitary operator that can be written as
following (see Table 1):

ˆ ,
ijk j

ijkO njk jk mjj jj  
 

 

where 1,ijk if i j k    , i.e., are all different and

otherwise,    1 mod3, mod 3m j n i      . The

second term applies to states where A would have a
choice of box to open and is one way of providing a
unique algorithm for this choice.

Physical meaning of operator Ŝ . B’s switch box op-
erator can be written as (see Table 1):

, , , ,

ˆ
ij

i j k i j

S i k ijk iij iij  


 ,

where the second term is not relevant to the mechanics
of game but is added to ensure unitarity of the opera-

tor. Both Ô and Ŝ map each possible basis state to
unique basis state.
Physical meaning of parameter  and operators ˆˆ ,N A

and B̂ . Operator N̂ is the identity operator on the
three-qutrit state. The  ˆ

i jA a and  ˆ
i jB b operators

can be selected by the players to operate on their
choice of box (that has some initial value to be speci-

fied later) and are restricted to members of  3SU .

B also selects the parameter  that controls the mix-

ture of staying or switching. In the context of a quan-
tum game it is only the expectation value of the payoff
that it is relevant. B wins if he picks the correct box,
hence 2

$ B fin
ij

i j j  
.

A wins if B is incorrect, so $ 1 $A B  .

Particular cases. Let us consider two cases at initial
states: with and without entanglement. In quantum
game theory it is convention to have an initial state

000 that is transformed by an entanglement operator

Ĵ . Instead we shall simply look at initial states with
and without entanglement.
Case 1: Initial state without entanglement. Suppose
the initial state of A’s and B’s choice is equal mixture
of all possible states with no entanglement. According
to this proposal we can calculate as following.

State of
game

Results of computational
algorithm

Initial state

in
   1 1

0 1 2 3 1 2 3
3 3

     

Operator

 ˆ ˆˆ ˆO I B A  

  

  

0 1 2 0 1 2

0 1 2 0 1 2

1

3

1

3

ijk j j j k k k
ijk

j j j j j j
j

b b b a a a ijk

b b b a a a mjj

    

    





Operator

 ˆ ˆ ˆˆ ˆ
inSO I B A  

   

   

0 1 2 0 1 2

0 1 2 0 1 2

1

3

1

3

ijk j j j k k k
ijk

jkm j j j j j j
jk

b b b a a a ikk

b b b a a a mkj





   

    





Payoff $B

 
2 22

0 1 2 0 1 2

2 22
0 1 2 0 1 2

1
cos 1

9

1
sin

9

jk j j j k k k
jk

j j j j j j
j

b b b a a a

b b b a a a

 



    

    




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Where  1 mod3.m j  If A chooses to apply the

identity operator, which is equivalent to her choosing
a mixed classical strategy where each of the boxes is
chosen with equal probability. B‘s payoff is

2 22 1
$ cos sin

3 3
B    , which the same as a classi-

cal mixed strategy where B chooses to switch with a

probability of
2cos  (payoff 2

3
) and not to switch

with probability
2sin  (payoff

1

3
).

Remark. The situation is not changed where A uses a
quantum strategy and B is restricted to apply the iden-
tity operator (leaving his chose as an equal superposi-
tion of the three possible boxes). If both players have
access to quantum strategies, A can restrict B to at

most 2
$

3
B  by choosing ˆ ˆA I , while B can ensure

an average payoff of at least 2

3
by choosing ˆ ˆB I

and 0  (switch).

Thus this is the NE of the quantum game and it given
the same result as the classical game. But the NE is
not unique.
Case 2: Initial state with maximal entanglement. Let
us consider a more interesting case when an initial
state with maximal entanglement between A’s and B’s
choices. Similar to the Case 1,we can calculate opera-
tor’s actions as following.

State of
game

Results of computational algo-
rithm

Initial
state

in

 1
0 00 11 22

3
  

Operator

 ˆ ˆˆ ˆO I B A  

1 1

3 3
i j k j k j j

i j k j

b a ijk b a mjj     
 

Operator

 ˆ ˆ ˆˆ ˆ
inSO I B A  

1 1

3 3
i jk j k jkm j j

i jk jk

b a ikk b a mk j     
 

Payoff

$B

 

22
0 0 1 1 2 2

22
0 0 1 1 2 2

1
sin

3

1
cos 1

3

j j j j j j
j

j k j k j k j k
j k

b a b a b a

b a b a b a



 

 

   





Limited
case to

classical
strategy
ˆ ˆB I

 

 

2 2 22
00 11 22

2 2 2 2 2 22
01 02 10 12 20 21

1
sin

3

1
cos

3

a a a

a a a a a a





 

     

Remark. Setting ˆ ˆB I is equal to the classical strat-
egy of selecting any of the three boxes with equal

probability and B is limited to a classical mixed strat-
egy.
A can then make the game fair by selecting an opera-
tor whose diagonal elements all have an absolute
value of 1

2

and whose off-diagonal elements all have

absolute value 1

2

. One such  3SU operator and this

yields a payoff to both player of 1

2
, whether B

chooses to switch or not. For a maximally entangled
initial state in a symmetric quantum game, every quan-
tum strategy has a counterstrategy since for any

 3U SU

       1 1ˆ ˆ ˆ ˆ00 11 22 00 11 22
3 3

TU I I U      

.
It means that for any strategy Â chosen by A, B has
the counter A (since the initial choice of players are
symmetric):

     1 1ˆ ˆ 00 11 22 00 11 22
3 3

A A     

,

while    †ˆ ˆ ˆ ˆˆA A I AA   . The correlation between

A’s and B’s choices remains so B can achieve a unit
payoff by not switching boxes.

Remark. Similarly for any strategy B̂ chosen by B, A

can ensure a win by countering with Â B 
if B has

chosen 0  , while a case 1  strategy is de-

feated by ˆB M  where M̂ is amount to a shufting of
B’s choice, and then switch boxes. As a result there is
no NE amongst pure quantum strategies.
Thus, if B has access to a quantum strategy and A
does not he can win all the time. Without entangle-
ment the quantum game confirms the expectations by
offering nothing more than a classical mixed strategy.
For the Nash equilibrium strategy the player B wins

two-thirds (i.e., 2

3
) of the time by switching boxes

when both participants have access to quantum strate-
gies and maximal entanglement of the initial states
produces the same payoffs as a classical game. We
will discuss the practical application of this case when
one of the player have the access to quantum strate-
gies and another do not have the same access in next
step.

3. Role of quantum communication in
quantum games

A side is to what extent the quantization procedure
blurs the contrast between cooperative and non-
cooperative games. In non-cooperative games players
are not allowed to communicate, cannot enter binding
agreements, and, importantly, cannot use correlated
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random variables. However, by giving the players and
entangled quantum state, one allows them in principle
to make use of correlations present in such a state,
violating the spirit of a non-cooperative game. More-
over, when comparing quantum and classical versions
of a game one should of course not turn a non-
cooperative classical game into an explicitly coopera-
tive quantum version. For instance, the solution of the
quantum version of the three-person Prisoner’s Di-
lemma given above is valid only if the players enter a
binding agreement to accept one of the three players
to win in an a priori symmetric game. In the quantum
games, we can see that in the decision-making step the
player has means of communication with each other,
i.e., no one has any information about which strategy
the other player will adopt. This is the same as in clas-
sical game. A fascinating property in quantum game is
entanglement. Although there is no communication
between the two players, the two qubits are entangled,
and therefore one player’s local action on his qubit
will affect the state of the other. Entanglement plays
as a contract of the game [1,2, 16].
Example: Prisoner’s Dilemma quantum communica-
tion. Let us use the following property of Pauli matri-
ces:

   : 0 1 , 1 1 ;

: 0 1 , 1 0 ; : 0 1 , 1 0

jk jkj k
z x

x y

k k

i

 

 

   

    

A decides to perform strategy
x AU  , 1& 0j k  .

B performs strategy
y Bi U  , 1& 1j k  . Since in

dilemma the entangled state created by Ĵ is

 1
00 11

2
in   , after A and B apply their uni-

tary transformations to their qubits, the following
phase interaction between qubits takes place:

   1
01 10

2
A A inU U i    . Finally, due to the

interference caused by
†Ĵ , we get

 † 1 1ˆ 01 10 2 01 0 10 01
2 22

fin

i
J i
 

          
 

Therefore, the state 01 , in this case, measured by the

jailer and from payoff both players are known the
changing of qubits. Thus, it can be said that the payoff
returns to each prisoners includes the phase informa-
tion of each qubit and this way it becomes possible to
distinguish a phase difference in a quantum game. The
communication that is meaningless in a classical game
can be meaningful in a quantum game [2, 17]. If there
would not be any other information carrier, then one
qubit could contain only one-bit information. In quan-
tum game, two-bit information is exchanged between
prisoners. This implies that there is another informa-
tion carrier, which is the phase of each qubit. The
phase difference cannot be distinguished by the simple
measurement and a certain device is necessary to do

this. It is a series of unitary transformations as

 †ˆ ˆ ˆ ˆ
A BJ U U J . In these cases devising the series of

unitary transformations from Table 1 is equivalent to
designing of QAGs and it can be classically efficient
simulated using QAG approach [18].

4. Conclusion

We are discussed different models of quantum games
and the role of QAGs in simulation of quantum games
on classical computers. We discussed new methods of
quantum control decision-making process simulation
based on application of quantum strategies with appli-
cations to AI, applied informatics and computer sci-
ence. The QAG’s design method on some quantum
games are illustrated. It is the background for R&D of
“classical-quantum” games model. New effect of wise
control design from non-robust KBs as “classical-
quantum” game is based on this model representation
[19]. The developed analysis and synthesis of QAG’s
dynamic are also the background for silicon circuit
gate design and simulation of robust knowledge base
(KB) for intelligent fuzzy controllers.
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Appendix: Entanglement of W - and GHZ -quantum
states under local operations and classical communi-
cation (LOCC) with nonzero probability [12]. Invert-
ible local transformations of a multipartite system are
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used to define equivalence classes in the set of entan-
gled states. Two states have the same kind of entan-
glement if both of them can be obtained from the other
by means of LOCC with nonzero probability. When
applied to pure states of a three-qubit, this approach
reveals the existence of two inequivalent kinds of tri-
partite entanglement, for which the GHZ state and a

W state appear as remarkable representatives. Two
randomly chosen pure states cannot be converted into
each other by means of LOCC, not even with a small
probability of success. The GHZ state

 1/ 2 000 111GHZ      or else a second state

 1/ 3 001 010 100W      
splits the set of genu-

inely trifold entangled states into two sets which are

unrelated under LOCC. That is, if  can be con-

verted into the state GHZ and  can be con-

verted into the state W , then it is not possible to

transform, even with only a very small probability of

success,  into  nor the other way round. The

state W cannot be obtained from a state GHZ

by means of LOCC and thus one could expect, in
principle, that it has some interesting, characteristic
properties. The GHZ state can be regarded as the
maximally entangled state of three qubits. However, if
one of the three qubits is traced out, the remaining
state is completely unentangled. Thus, the entangle-

ment properties of the state GHZ are very fragile

under particle losses. The entanglement of W state

is maximally robust under disposal of any one of the
three qubits, in the sense that the remaining reduced
matrices retain, according to several criteria, the
greatest possible amount of entanglement, compared
to any other state of three qubits, either pure or mixed.

operators B and C . Its of these operators is neces-
sarily invertible, and in particular

1 1 1A B C      . We can use local uni-

taries in order to take  into the useful standard

product form

 0 0 0 ,i
GHZ A B CK c s e 

     

   
1

1 2 1/ 2,K c s c c c c     



    , (A.1)

0 1A c s    etc. All this states are in the

same equivalence as the GHZ under SLOCC. In-

deed, the invertible local operator

1 1

0 00

i

i

c cc s c e
K

s ss s e


   


  

     
      
    

applied to GHZ produces the state GHZ . The

generalized W - state can be represented as following:

001 010 100 000W a b c d     , (A.2)

where , , 0a b c  and  1 0d a b c     .

The parties can locally obtain the state (A.2) form the

state W by applying of an invertible local operation

of the form

3 0
1 0

3 0 100

a b
b

c
a

 
     

           
 

.

We note that states within the GHZ class and the W
class depend, respectively, on five and three parame-
ters that cannot be changed by means of local unitar-

ies. The class W is of zero measure compared to the

GHZ class.


