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SYSTEM FOR SOFT COMPUTING SIMULATION

REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 60/664,898, filed Mar. 24, 2005,
titled “SYSTEM FOR SOFT COMPUTING SIMUT A-
TION,” the entirc contents of which is hereby incorporated
by reference.

BACKGROUND
[0002]

[0003] The invention relates generally to control systems,
and more particularly to the design method of intelligent
control system structures based on soft computing optimi-
zation.

[0004] 2. Description of the Related Art

1. Field of invention

[0005] Feedback control systems are widely used to main-
tain the output of a dynamic system at a desired valuc in
spite of external disturbances that would displace it from the
desired value. For example, a household space-heating fur-
nace, controlled by a thermostat, is an example of a feedback
control system. The thermostat continuously measures the
air temperature inside the house, and when the temperature
falls below a desired minimum temperature the thermostat
turns the furnace on. When the interior temperature reaches
the desired minimum temperature, the thermostat turns the
furnace off. The thermostat-furnace system maintains the
houschold temperaturc at a substantially constant value in
spite of external disturbances such as a drop in the outside
temperature. Similar types of feedback controls are used in
many applications.

[0006] A central component in a feedback control system
is a controlled object, a machine or a process that can be
defined as a “plant”, whose output variable is to be con-
trolled. In the above example, the “plant” is the house, the
output variable is the interior air temperature in the house
and the disturbance is the flow of heat (dispersion) through
the walls of the house. The plant is controlled by a control
system. In the above example, the control system is the
thermostat in combination with the furnace. The thermostat-
furnace system uses simple on-off feedback control system
to maintain the temperature of the house. In many control
environments, such as motor shaft position or motor speed
control systems, simple on-oft feedback control is insuthi-
cient. More advanced control systems rely on combinations
of proportional feedback control, integral feedback control,
and derivative feedback control. A feedback control based
on a sum of proportional, plus integral, plus derivative
feedbacks, is often referred as a P(I)D control.

[0007] A P(DD control system is a linear control system
that is based on a dynamic model ol the plant. In classical
control systems, a linear dynamic model is obtained in the
form of dynamic equations, usually ordinary differential
equations. The plant is assumed to be relatively linear, time
invariant, and stable. However, many real-world plants are
time varying, highly non-linear, and unstable. For example,
the dynamic model may contain parameters (e.g., masses,
inductance, aerodynamics coeflicients, etc.), which are
either only approximately known or depend on a changing
environment. If the parameter variation is small and the
dynamic model is stable, then the P(DD controller may be
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satisfactory. However, if the parameter variation is large or
if the dynamic model is unstable, then it is common to add
Adaptive or Intelligent (Al) control functions to the P(H)D
control system.

[0008] AI control systems use an optimizer, typically a
non-linear optimizer, to program the operation of the P(I)DD
controller and thereby, improve the overall operation of the
control system.

[0009] Classical advanced control theory is based on the
assumption that all controlled “plants™ can be approximated
as linear systems near equilibrium points. Unfortunately, this
assumption is rarely true in the real world. Most plants are
highly nonlinear, and often do not have simple control
algorithms. In order to meet these needs for a nonlinear
control, systems have been developed that use Soft Com-
puting (SC) concepts such Fuzzy Neural Networks (FNN),
Fuzzy Controllers (FC), and the like. By these techniques,
the control system evolves (changes) in time to adapt itself
to changes that may occur in the controlled “plant” and/or in
the operating environment.

[0010] Control systems based on SC typically use a
Knowledge Base (KB) to contain the knowledge of the FC
system. The KB typically has many rules that describe how
the FC determines control parameters during operation.
Thus, the performance of an SC controller depends on the
quality of the KB and the knowledge represented by the KB.
Increasing the number of rules in the KB generally increases
(very often with redundancy) the knowledge represented by
the KB but at a cost of more storage and more computational
complexity. Thus, design ol a SC system typically involves
tradeotts regarding the size ot the KB, the number of rules,
the types of rules, etc. Unfortunately, the prior art methods
for selecting KI3 parameters such as the number and types of
rules are based on ad hoc procedures using intuition and
trial-and-error approaches.

SUMMARY

[0011] The present invention solves these and other prob-
lems by providing an SCOptimizer for designing a KB to be
used in a SC system such as a SC control system. In one
embodiment, the SCOptimizer displays input values, output
values, and member functions (MFs) to allow a user to
create a rules database. In one embodiment, the SCOpti-
mizer provides structure selection, structure optimization
method selection, and teaching signal optimization. In one
embodiment, the user can manually edit the member func-
tions during the optimization process.

[0012] In onc embodiment, the user makes the sclection of
fuzzy model, including one or more of: the number of input
and/or output variables; the type of fuzzy inference model
(e.g., Mamdani, Sugeno, Tsukamoto, etc.); and the prelimi-
nary type ol membership [unctions.

[0013] In one embodiment, a Genetic Algorithm (GA) is
used to optimize linguistic variable parameters and the
input-output training patterns. In one embodiment, a GA is
used to optimize the rule base, using the fuzzy model,
optimal linguistic variable parameters, and a teaching signal.

[0014] One embodiment includes fine tuning of the FNN.
The GA produces a near-optimal FNN. In one embodiment,
the near-optimal FNN can be improved using classical
derivative-based optimization procedures.
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[0015] One embodiment includes optimization of the FIS
structure by using a GA with a fitness function based on a
response of the actual plant model.

[0016] One embodiment includes optimization of the FIS
structure by a GA with a fitness function based on a response
of the actual plant. The plant can be linear, nonlinear,
unstable, etc.

[0017] The result is a specification of an I'IS structure that
specifies parameters of the optimal FC according to desired
requirements.

BRIEF DESCRIPTION OF THE FIGURES

[0018] FIG. 1 is a flowchart of the SC optimizer.
[0019] FIG. 2 shows the SCOptimizer program window.
[0020] FIG. 3 shows the Number Format dialog box.
[0021] FIG. 4 shows the Variables page.

[0022] FIG. 5 shows the Rule database page.

[0023] FIG. 6 shows the Add/Fdit Rule dialog for the
Mamdani model.

[0024] FIG. 7 shows the Add/Edit Rule dialog for the
Sugeno 0 model.

[0025] FIG. 8 shows the Simulation preview page.

[0026] FIG. 9 shows the dialog for creating membership
functions for uniform the distribution algorithm.

[0027] FIG. 10 shows the Matlab interface parameters
page.

[0028] FIG. 11 shows the class hierarchy of the SCOpti-
mzer.
[0029] FIG. 12 shows the objects used during the fuzzy

inference procedure.

[0030] FIG. 13 shows the plugin loading and registration
process.
[0031] FIG. 14 shows the plugin calling process.

DETAILED DESCRIPTION

[0032] The Soft Computing Optimizer (SCOptimizer)
provides a system for generating a fuzzy model as described
in U.S. application Ser. No. 10/897,978, the entire contents
of which is hereby incorporated by reference.

[0033] FIG. 1 is a high-level flowchart for the SCOpti-
mizer 100. By way of explanation, and not by way of
limitation, the operation of the flowchart divides operation
into five stages, shown as Stages 1, 2, 3, 4, and 5 (101-105).

[0034] In Stage 1 (101), the user selects a fuzzy model by
sclecting onc or more parameters such as, for example, the
number of input and output variables, the type of fuzzy
inference model (Mamdani, Sugeno, Tsukamoto, etc.), and
the source of the teaching signal.

[0035] In Stage 2 (102), a first GA, GA-1 112 optimizes
linguistic variable parameters, using the information
obtained in Stage 1 (101) about the general system configu-
ration, and the input-output training patterns obtained from
the training signal as an input-output table.
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[0036] In Stage 3 (103), the precedent part of the rule base
is created and rules are ranked according to their firing
strength. In one embodiment, rules with relatively high
firing strength are kept, whereas weak rules with relatively
small firing strength are eliminated.

[0037] Tn Stage 4 (104), a second GA, GA-2 114, opti-
mizes a rule base, using the fuzzy model obtained in Stage
1 (101), optimal linguistic variable parameters obtained in
Stage 2 (102), the selected set of rules obtained in Stage 3
(103), and the training signal.

[0038] In Stage 5 (105), the structure of FNN is further
optimized. In order to reach the optimal structure, the
classical derivative-based optimization procedures can be
used, with a combination of initial conditions for back
propagation, obtained from previous optimization stages.
The result of Stage 5 (105) is an improved fuzzy inference
structure corresponding to the training signal and the plant
that was used to generate the training signal. Stage 5 (105)
is optional and can be bypassed. If Stage 5 (105) is bypassed,
then the FIS structure obtained with the GAs of Stages 2 and
4 is used.

[0039] In one embodiment, Stage 5 (105) can be realized
as a GA-3 which further optimizes the structure of the
linguistic variables, using the set of rules obtained in the
Stage 3 (103) and Stage 4 (104). In this case, the parameters
of the membership functions are modified in order to reduce
approximation error.

[0040] In one embodiment of Stage 4 (104) and Stage 5
(105), selected components of the KB are optimized. In one
embodiment, if KB has more than one output signals, the
consequent part of the rules may be optimized independently
for each output in Stage 4 (104). In one embodiment, it KB
has more than one input, membership functions of selected
inputs are optimized in Stage 5 (105).

[0041] In one embodiment of Stage 4 (104) and Stage 5
(105), the actual plant response of the fitness function can be
used as a performance criteria of the FIS structure during GA
optimization.

[0042] In one embodiment, the SCOptimizer uses a GA
approach Lo solve optimization problems related with choos-
ing the number of membership functions, the types and
parameters of the membership functions, optimization of
fuzzy rules and refinement of the KB.

[0043] GA optimizers are often computationally expen-
sive because each chromosome created during genetic
operations is evaluated according to a fitness function. For
cxample, a GA with a population size of 100 chromosomes
evolved 100 generations, may require up to 10000 calcula-
tions of the fitness function. Usually this number is smaller,
since it is possible to keep track of chromosomes and avoid
re-evaluation. Nevertheless, the total number of calculations
is typically much greater than the number of evaluations
required by some sophisticated classical optimization algo-
rithms. This computational complexity is a payback for the
robustness obtained when a GA is used. The large number of
evaluations acts as a practical constraint on applications
using a GA. This practical constraint on the GA makes it
worthwhile to develop simpler fitness functions by dividing
the extraction of the KB of the FIS into several simpler tasks,
such as: define the number and shape of membership func-
tions; select optimal rules; (ix optimal rules structure; and
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refine the KB structure. Each of these tasks is discussed in
more detail below. In some sense the SCOptimizer 100 uses
a divide-and-conquer type of algorithm applied to the KB
optimization problem.

[0044] In one embodiment, the SCOptimizer 100 uses
samples of Input-Output vectors to create and optimize a
model of a fuzzy system. In one embodiment, the SCOpti-
mizer 100 design flow includes:

[0045] Project creation

[0046] Shape definition of the Member Functions (MF)

[0047] Creation of a rule database

[0048] Optimization of the rulc databasc

[0049] Fine tuning of the model (e.g., refinement of the
model)

[0050] When a new model is created, the user can input
various model paramecters, such as, for example, model
parameters, inference model, number of input and output
variables, number of fuzzy sets for each variable, etc. After
the model is created (or an existing model is loaded) the user
is presented with a main program window 200 shown in
FIG. 2. The program window 200 provides Graphics User
Interface (GUI) controls to allow the user to view model
parameters, start different optimization algorithms, edit the
model, etc.

[0051] Model optimization includes defining the shape of
the membership functions of the fuzzy sets of input and (if
used by the model) of output variables. In one embodiment,
the SCOptimizer 100 supports two modes of MF shape
definition: using the uniform distribution method or by using
the first genetic algorithm GA-1 112.

[0052] The uniform distribution method distributes fuzzy
sets on a signal change interval according to signal prob-
ability distribution and a user-selected shape of the mem-
bership functions.

[0053] The GA-1 112 algorithm attempts to find the best
combination of: the number of fuzzy sets per variable, the
membership function shape and the overlap coefficient
between neighbor fuzzy sets. For each combination, it
performs a uniform distribution algorithm and attempts to
maximize the mutual possibility of the fuzzy sets of each
variable.

[0054] Rule database creation includes creating a database
that describes which output can be activated for given input.
In onc embodiment, the SCOptimizer 100 supports two
types of rule databases, namely, a complete database and/or
an LBRW database.

[0055] Inthe complete database, the rules of the complete
database present all possible combinations of fuzzy sets of
the input variables. The number of rules in the complete
database is equal to the product ot the number of tuzzy sets
of the input variables. This results in a relatively large
database and, consequently, relatively slow optimization
speed when used with more than one or two variables.

[0056] The LBRW database stores a subset of the rules,
namely, the subset of rules selected with a so-called “Let the
Best Rule Win” (LBRW) algorithm. The LBRW algorithm
selects those rules that contribute relatively more (o the

(U8
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output. Reducing the number of rules with the LBRW
algorithm provides a faster optimization speed with little or
no loss of model precision.

[0057] During the rule database optimization, the database
is filled with the actual rule data. In one embodiment, the
SCOptimizer 100 uses the second genetic optimization
algorithm GA-2 114 to optimize the data in the rule data-
base.

[0058] The quality of the model created during previous
steps is often improved by using a third genetic algorithm
GA-3 115. The GA-3 115 is vsed to alter the shapes of the
membership functions and to optimize model output with a
fixed number of membership functions and the database
structure. In one embodiment, an error back propagation
algorithm is also used to improve the model output by
fine-tuning database parameters using classical gradient
optimization method.

[0059] The SCOptimizer 100 optimizes the membership
functions according to a training signal. The training signal
presents samples of input values and corresponding output
values. In one embodiment, the SCOptimizer 100 reads
training signal data from Matlab files and/or from text files.

[0060] Inoneembodiment, the training signal text files are
processed based on locale data, which defines symbols for
decimal point, thousands separators and so on. In one
embodiment, the SCOptimizer 100 uses windows settings
for these parameters. If those settings do not match signal
file format they can be changed by the user. Once changed,
locale parameters are saved in model and are used for future
processing of data. Locale setting affects reading and writing
of text data files and model files.

[0061] In one embodiment, the SCOptimizer 100 is con-
figured as an application that runs on a Graphical User
Interface (GUI) system, such as, for example, Microsoft
Windows.

[0062] As shown in FIG. 2, a SCOptimizer window 200
is divided into three parts. On the left-hand part of the
window there are command buttons 201, which activate the
design steps. Initially some of the buttons 201 are disabled,
because actions performed by those buttons cannot bhe
performed before other commands are performed. The inac-
tive buttons are activated after completing previous steps.

[0063] The right-hand portion of the command window
shows the model parameters. It is organized as pages 202,
each of which displays different properties of the model. The
user can switch between the pages 202 using tabs. A
“General” page displays main model parameters including
file names, inference model, etc. A “Variables” page displays
input and output variables and their membership functions.
The user can use the variables page to manually edit
membership functions. A “Rule database” page shows the
state of the model rule database. A “Simulation results” page
shows results of the luzzy inference [or the output variables.
Other pages, such as, for example, a “Pendulum” page
shown in FIG. 2 are provided for visualization of the
graphical interface of user-defined plugins provided to the
SCOptimizer 100 in order to provide access to various
control objects. Plugins are described in connection with
FIGS. 12 and 13.

[0064] A lower portion of the window 200 is configured as
a window 203. The window 203 provides tabs [or a “Log”
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page and a “Simulation Preview” page. The Log page
displays a model creation log. The SCOptimizer 100 prints
messages during model creation in the window 203. The
Simulation Preview page displays training signal and model
output. Graphs on the Simulation Preview page are updated
as the model parameters are changed.

[0065] A window menu is provided to the page 200. The
window menu includes top-level menus labeled File, Action,
and View.

[0066] The File menu includes the following drop-down
menu items:

[0067] New: Closes the current model and starts cre-
ation of a new model.

[0068] Open: Opens an existing model from a file.
[0069] ILoad Teaching Signal: Loads a training signal.

[0070] Save: Saves the current model to the file it is
loaded from.

[0071] Save As: Saves the current model to another file.

[0072] Number Format: Set number format conventions
for the training signal.

[0073] Exit: Closes The SCOptimizer 100.

[0074] The Action menu includes the following drop-
down menu items (which correspond to the command but-
tons 201):

[0075] Generate Variables: Create variables using the
uniform distribution and/or the GA-1 112 algorithms.

[0076] Create Rule Database: Create the rule database
(103).

[0077] Optimize Rule Database: Optimize rule database
(104) using the GA-2 114 algorithm.

[0078] Reline KB: Refine the model using the GA-3 115
algorithm.

[0079] Back propagation: Optimize the rule database
using the back propagation algorithm 125.

[0080] GA Test: Run an abstract genetic optimization.

[0081] The View menu can be used to switch between the
SCOptimizer 100 pages and includes the following drop-
down menu items:

[0082] Project properties: Display the General proper-

tics page.
[0083] Variables: Display the Variables page.
[0084] Rule Database: Display the Rule Database page.
[0085] Log: Display the Log page.
[0036] Simulation Preview: Display the Simulation Pre-
view page.

[0087] Tn one embodiment, a model file is used to store
model data, such as, for example, the model type, variables,
membership functions, the rule database, etc. In one
embodiment, a project file is used to store information about
files used in the project, including the file names of the
model [ile and the training signal [ile.
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[0088] The user creates a new model by selecting File/
New from the menu. Selecting File/New displays a multi-
page wizard-style create-model dialog box that guides the
user through a series of dialogs to create the new model. The
first page of the create-model dialog allows the user to enter
the following data:

[0089] Model file name: The name of the model.

[0090] Inference model: In one embodiment, the SCOp-
timizer 100 supports the Mamdani model and Sugeno
order 0 and 1 models. One of ordinary skill in the art
will recognize that other models can be provided.

[0091] Inference mode: The inference mode corre-
sponds to the type of operation for fuzzy AND. In one
embodiment, the inference mode can be product or
minimum.

[0092] A second page of the create-model dialog allows
the user to select the number of input and output variables.

[0093] A third and fourth page of the create-model dialog
allows the user to specify the properties of the input and
output variables. Each page provides a list with suggested
variable names and the number of membership functions.
The user can select items from the lists to change param-
eters.

[0094] A final page of the create-model dialog allows the
user to specify a training signal file. Messages describing
creation of the new model are displayed on the Log page.

[0095] In one embodiment, the training signal file can be
in Matlab format or in text file format. Text files are
processed using locale settings. FIG. 3 shows a dialog box
300 for specifying the locale parameters. The dialog box 300
includes controls to allow the user to specify a list separator,
a decimal scparator, a negative sign, a positive sign, a
grouping method, and a thousands separator. The list sepa-
rator is a symbol or string used to separate several successive
numbers in list. The decimal separator is a character used to
separdle integer and [ractional portions ol a real number. The
negative sign is a character used to indicate a negative
number. The positive sign is a character used to indicate a
positive number.

[0096] The grouping method is used to define how digits
of the integer part of a real number are grouped. This is a
semicolon-separated list of numbers, defining the number of
digits in each group, from right to left. A trailing 0 means
“use previous value for all following groups”. In one
embodiment, the SCOptimizer 100 inserts the thousands
separator in every place defined by the grouping method, but
will accept thousand separators in any position in input files.

[0097] The thousands separator defines the character used
to separate groups of digits, defined by the grouping method.

[0098] For example, Matlab text files correspond to the
following settings

[0099]
[0100]

List separator: ‘3

<

Decimal separator: .

« s

[0101] Negative sign:

[0102] Posilive sign: ‘+°
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[0103] Grouping method: 3;
[0104] Thousand’s separator:

[0105] The first page with model parameters the user sees
is the General page. It contains project information includ-
ing:

[0106] The name of the file containing the model.

[0107] The inference model.

[0108] The inference mode (operation used as fuzzy
OR).

[0109] The number of input and output variables.

[0110] The name of the file containing the training
signal.

[0111] The number of teaching signal samples in the
training signal file.

[0112] The inference mode can be changed by selecting
the minimum or product inference mode from the drop-
down list.

[0113] To get detailed information about model variables
and rule database switch to corresponding pages, described
in the following sections.

[0114] Model variables can be viewed and ediled on the
Variables page 400 shown in FIG. 4. The user can switch to
this page by clicking on the Variables tab or by selecting
View/Variables menu command. The user can select a
desired variable (e.g., Input__1, etc.) by selecting a variable
name from a drop-down list 401.

[0115] For the selected variable, the parameters: Mini-
mum, Maximum, Scale, and Offset are listed. The minimum
and maximum parameters are the margins of the signal
change interval. The SCOptimizer 100 uses a normalized
signal for internal calculations. The normalization param-
eters are Scale and Offset. The following formula is used for
normalization:

normalized_value=input_value*Scale+Offset.

[0116] Variables page 400 also includes a graph 402
showing the membership functions (MFs) of the variable.
The graph 402 displays distribution functions of the MFs.
The user can change the appearance of this window by using
a pop-up menu, activated by a right-click of the mouse. The
pop-up menu provides the following menu commands:

[0117] Denormalized Space
[0118] Normalized Space
[0119] Track Cursor

[0120] Display MF Supports
[0121] Display Signal Interval
[0122] Color Shapes

[0123] Color Lines

[0124] B&W Lines

[0125] Save Image

[0126] The Denormalized space command draws the
x-axis coordinates using denormalized (signal) space. The
Nomnalized space command draws the x-axis coordinates
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using normalized (internal for the SCOptimizer 100) space.
The Track cursor command displays the margins of alpha-
levels. When the mouse cursor is on the y-axis then lines
representing alpha level are drawn, as well as color lines
which show margins of this level for MFs. When the cursor
is somewhere else on the window, then vertical lines at the
position of the cursor and horizontal lines from intersections
of this line with the MFs are drawn. The Display MF
supports command display supports of the MFs using col-
ored vertical lines. The Display signal interval command
displays margins of the signal change interval with vertical
lines. The Color shapes command draws functions using
filled color figures (default). The Color lines command
draws functions using colored lines. The B&W lines com-
mand draws functions using black lines. The Save Image
command saves the current image to a file.

[0127] The user can use the window 402 to change MF
distribution parameters by moving the mouse to the x
coordinate of the modal value or support margin of one of
the MFs. A Colored line appears showing the selected
parameter. The user can then press and hold the left mouse
button and move the mouse left or right to change the
parameter. The new shape of the MF is drawn using an
outline method. The user can then release the left mouse
button when the desired shape of the MF is achieved.

[0128] A list 403 of the page 400 lists the membership
functions and their parameters. Each line of the list 403
contains the MF name, the distribution type, and the distri-
bution parameters. The user can change the parameters by
double-clicking a list item, which causes a dialog box to
appear. This dialog box displays parameters of the member-
ship function. Parameters can be changed by entering new
data into corresponding fields. The user can also use this
dialog to delete membership functions of input variables. If
the rule database is already created, then rules with if-part
using this membership function will also be deleted. An
“Add MF” button allows the user to manually add new
membership function to the current variable.

[0129] To view or edit the rule database the user can
switch to the rule database page 500 shown in FIG. 5. The
rule database page 500 displays the following parameters:

[0130] Rule database type: The type of the database
used in the model (e.g., complete rule database or
LBRW Rule database).

[0131] Maximal number of rules: The maximal number
of rules for the current model.

[0132] Total rules: The total number of rules stored in
the database (for a complete database this is equal to
maximal number of rules, for a LBRW database it can
be less than maximal).

[0133] Show rules for output: The rule database is
displayed for one of the outputs. This list selects output
variable for which database are displayed.

[0134] Selected rule: Displays a textual representation
of selected rule, if any.

[0135] A rule database editor 501 displays the database as
a network with four layers. The first layer 511 is the input
variable layer. Each circle in the first layer 511 represents an
input variable. The second layer 512 is the input MF layer.
Circles of the second layer 512 represent membership func-
tions of variables. Circles in the third layer 513 represent
rules of the database. The [ourth layer 514 is the output layer.
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For a Mamdani model output, the fourth layer 514 is
composed of circles, corresponding to membership func-
tions of the selected output variable. For the Sugeno models,
the fourth layer 514 displays numerical parameters ot the
rule.

[0136] The database structure is shown with lines that
connect the nodes in the different layers. Each node in the
rule level 513 is linked with those MF's in the input MF layer
512 that are included in the if-part of the rule. It is also linked
with the output MF 514 or the numerical parameter of the
then-part.

[0137] The user can select a rule from the database by
clicking on the node ot the rule level 513. Lines (connec-
tions between layers 511-514) associated with the selected
rule are highlighted. A textual representation of the rule is
shown in the Selected rule fleld. The user can edit or delete
the selected rule (rules from a complete database can not be
deleted).

[0138] FIG. 6 shows an Add/Edit dialog 600 for the
Mamdani model. A lelt-hand list 601 of the dialog 600
represents the if-part of the rule, and a right-hand list 602
part corresponds to the then-part. The user can change
parameters of any part by selecting items from the lists 601,
602 and changing values in the drop-down box below the
list.

[0139] FIG. 7 shows an Add/Edit dialog 700 for the
Sugeno 0 model. To change an output parameter for the
Sugeno 0 model the user selects a corresponding line from
an output list 702, enters a new value in a text field below
the list 702, and press a “set” button.

[0140] FIG. 8 shows a simulation preview page 800 used
to verify the current model output. The simulation preview
page 800 can be activated by clicking the mouse on the
Simulation preview tab or by selecting View/Simulation
preview menu command. The simulation preview page 800
displays both the training signal and the model output for
one of the output variables.

[0141] Highlighted regions correspond to samples of the
training signal that do not have rules with a corresponding
if-part in the database. The model cannot calculate output for
those samples.

[0142] The simulation preview window can be customized
by a pop-up menu, activated by click of the right mouse
button inside the window, that includes the following menu
items:

[0143] Variable: Change the output variables signals
that are displayed.

[0144] Display error interval: Highlight regions for
which output is not calculated properly.

[0145] Display delta: Display the difference between
the training signal and the model output. In this mode
a first color line shows the error level and a second
color line shows the error value.

[0146] Color lines: Display signals using different col-
ors.

[0147] B&W lines: Display signals with black lines.

[0148] Save Image: Save contents of the window as
Windows BMP file.
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[0149] When creating the model, the user can create
membership functions of the variables by pressing the
Create Variables button or selecting the Action/Generate
Variables to open the create variables wizard.

[0150] Using the create variables wizard, the user can
select the number of MFs per variable and their shape
manually, using a uniform distribution algorithm. Or, the
SCOptimizer 100 can optimize the MF parameters using the
GA-1 112 algorithm.

[0151] When working with the GA-1 112 algorithm, the
user can run a signal-filtering algorithm that removes redun-
dant signals according to a desired signal threshold level.
This can improve the quality of the fuzzy sets created by the
GA-1 112 algorithm.

[0152] The user can also instruct the GA-1 112 algorithm
to alter the shapes of the MFs, but not their number.

[0153] The user can also select the specific variables to be
optimized. The default action is to optimize all variables.

[0154] While the GA-1 112 algorithm operates, a progress
dialog shows the number of the current generation and the
achieved level of evaluation function. In one embodiment,
the GA-1 112 uses different fitness functions for input and
output variables, so it will first optimize input variables and
then output variables.

[0155] For uniform distribution algorithm, the user can
manually select the shapes of membership functions using
the dialog 900 shown in FIG. 9. The dialog 900 provides the
following controls:

[0156] MF Shape: The shapes of the membership func-
tions.

[0157] Support placement: Specify how to place sup-
ports. By signal means distribute supports so that each
one will include equal number of training signal
samples. Uniformly will distribute supports uniformly
on the signal change interval.

[0158] Center placement: Specify how to place centers
of non-symmetrical distributions. At histogram center
places the center so that there are equal number of
signal samples in the support area (o the lell and to the
right from center. Closer to interval bounds will shift
the center of the MF to the nearest signal interval
bound. The amount of shift increases with distance
from the interval center.

[0159] Overlap: The overlap coefficient between neigh-
bor supports. Values from -1 to 1 are allowed, 0
meaning no overlap, positive values produce overlap-
ping supports, negative values produce space between
supports.

[0160] After specifying the input variables, the user can
fill parameters for the output variables. Once the input and
output variables are specified, the uniform distribution algo-
rithm will create the MFs.

[0161] After the user has created the variables and mem-
bership functions, the user can create the rule database by
pressing the Create rule database command button or by
using the Action/Create rule database menu to display the
rule database dialog.
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[0162] The rule database dialog allows the user to select
the type of the rule database (e.g., complete database, LBRW
database, etc.) The complete rule database stores all the rules
for a given model. The number of rules in the complete
database is given by the product of the number of fuzzy sets
of input variables. This results in a relatively large database
and relatively slow optimization speed.

[0163] The LBRW database stores only selected rules,
which are chosen by LBRW algorithm. When creating the
LBRW database, the user can specify the exact number of
rules or the minimal level of firing strength (threshold level).
In the latter case, the resulting database includes rules with
firing strength greater than or equal to the threshold. The
user can also use automatic rule number estimation mode to
select a minimal number of rules, so that the given number
of rules covers each point of learning data, if possible.

[0164] The user can also specify how the LBRW algo-
rithm sorts rules. If the user selects “Sum of firing strength”
then the LBRW algorithm adds the firing strengths of the
rules for each sample of the training signal. If the user selects
“Maximum of firing strength” then the maximal value are
used.

[0165] The database created by using the Create Rule
Database command has all outputs set to 0. Entries in the
database are created by the optimization procedure. In one
embodiment, the SCOptimizer 100 uses the GA-2 114
optimization to optimize the database. The database states
are analyzed by comparing inference output with the train-
ing signal and minimizing difference between the two. In
one embodiment, each output is optimized separately.

[0166] To start database optimization, the user selects the
Optimize rules command button or the Action/Optimize rule
database menu item to open the rule database optimization
wizard.

[0167] The rule database optimization wizard allows the
user to select the training signal source for the GA-2 114
algorithm. The user can select the complete training signal
or an optimized teaching signal. If the user selects the
optimized training signal, then a pattern reduction algorithm
is used to optimize training signal. The pattern reduction
algorithm attempts to select only those samples of the
complete training signal that activate different rules. Using
the optimized training signal increases the speed of the
GA-2 114 optimization speed without significant loss in
precision. The user can also use Matlab/Simulink simulation
as source of data for the GA-2 114 optimization.

[0168] The user can also select the output variables for
which the database is to be optimized. By default, optimi-
zation is selected for all variables. The user can select to
have the output variables optimized one after the other or all
at the same time.

[0169] During optimization, a progress window appcars.
The progress window shows which variable is currently
optimized, the number of the current generation, and the
achieved level of the evaluation function.

[0170] After the rule database is optimized, the user can
further improve the model quality by using the GA-3
algorithm for MF optimization. The user selects start model
refinement by clicking the Refine KB command button or by
selecting the Action/Reline KB menu ilem (o aclivale a
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model refinement wizard. The model refinement wizard
allows the user to select optimization based on a maximi-
zation of mutual information entropy, a minimization of
output error, and/or a Matlab simulation. In the Maximiza-
tion of mutual information entropy optimization, the SCOp-
timizer 100 minimizes the mutual information entropy
between MF fuzzy sets. This similar to the function used in
the GA-1 112 algorithm, but unlike the GA-1 112, the GA-3
115 does not change the number of MFs per variable. Rather,
the MF parameters are changed. In the minimization of
output error optimization, the output error is minimized by
the GA-3 115. In the Matlab simulation optimization, Mat-
lab/Simulink is used to calculate the fitness function.

[0171] The model refinement wizard also allows the user
to select the input variables to be optimized. By default,
optimization is selected for all variables. The variables can
be optimized separately or together.

[0172] While the GA-3 algorithm operates, a progress
dialog shows the number of the current generation and the
achieved level of the evaluation function.

[0173] 1If the user is still not satisfied with model quality,
the user can run the rule database optimization GA-2 114
again and/or run the error back propagation algorithm 125.

[0174] The back propagation algorithm 125 implements a
classical gradient-type optimization method, which provides
an effective way to further improve the model after genetic
optimization. The user can start the back propagation algo-
rithm 125 by clicking the Back Propagation command
button or sclecting the Action/Back Propagation menu item
to display the back propagation wizard.

[0175] The back propagation wizard allows the user to
specity the back propagation algorithm parameters learn rate
and stop criteria. The learn rate defines how much the model
parameters can be changed in response to the output error.
The stop criteria defines how the back propagation algorithm
is stopped. In one embodiment, the algorithm can be can be
stopped after a fixed number of iterations or when a change
of output error becomes less than a given threshold.

[0176] On the second page of the back propagation wiz-
ard, the user can select which input variables are to be
optimized. By default, the optimization is selected for all
variables.

[0177] The user can use Matlab/Simulink to calculate the
fitness functions for one or more genetic algorithms used
during creation of the model. When using Matlab/Simulink
the genetic algorithm executes a Matlab function specified
by the user to obtain one or more fitness values for the
current model state. This function in turn makes calls to the
SCOptimizer 100 library functions (e.g., GAlnfer/Sim-
GAlnfer) that perform the inference operation with current
model. Matlab functions compute the fitness function based
on the model output and return it to the SCOptimizer 100.

[0178] When the user selects Matlab for calculation, a
Matlab parameters dialog is displayed to allow the user to
specify an initialize session command, a fitness calculation
command, and a ¢lose session command.

[0179] The initialize session command is executed at the
beginning of the genetic optimization. A string parameter of
the initialize session command is passed to the GAConnect/
SimGAConnect function to initialize the session with the
SCOptimizer 100.
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[0180] The fitness calculation command is called each
time the fitness value is required. This command can cal-
culate the fitness value using GAlnfer/SimGAlnfer and
place it in a variable called SCO_Fitness.

[0181] The close session command is executed when the
genetic optimization is finished. The close session command
calls GADisconnect/SimGADisconnect to closc the Matlab-
SCOptimizer 100 link and to free other resources, if any. If
the user does not specify close session command then
Matlab session will not close when the optimization is over.

[0182] When the genetic optimization starts, the SCOpti-
mizer 100 starts the Matlab session and executes the initial-
ize session command, the fitness calculation command, and
the close session command as Matlab commands.

[0183] A GA test mode can be used to perform optimiza-
tion of abstract variables using Matlab for fitness value
calculations. For example, this mode can be used to generate
the training signal for the SCOptimizer 100. The user can
start the GA test algorithm by clicking the GA Test com-
mand button or by selecting the Action/GA Test menu item
to display a GA test wizard.

[0184] ‘lhe first page of the GA test wizard allows the user
to enter genetic algorithm parameters.

[0185] The second page of the GA test wizard allows the
user to define the parameters to be optimized. Parameters are
entered in groups. Parameters inside each group have equal
characteristics. For each group, the user can enter a number
of elements in the group, a minimal value, a maximal value,
and a search step. The actual search step can be less than
specified, based on a number of bits used to represent a
value. A list at the top part of the wizard displays the
currently-defined groups of parameters. A line below the list
graphically displays parts of the chromosome used to rep-
resent each group. Controls are provided to allow the user to
add, change and delete groups.

[0186] The user can instruct the SCOptimizer 100 to
optimize groups together or separately.

[0187] As shown in FIG. 10, a third page of the GA test
wizard provides the Matlab commands page 1000. The
SCOptimizer 100 adds following text to the fitness calcu-

lation command: (N[x1, . . . ,x1]), where N=0 for when the
groups are optimized together; otherwise, N is the index of
the group. The values x1, . . . ,x1 correspond to the values

of the currently optimized parameters (current group or all
groups). Inference is a software tool designed to simulate a
fuzzy system behavior in order to verify the approximation
level obtained during the learning phase or to use inference
process from other applications. Inference can work in two
modes: simulation on a single pattern, or simulation from
file.

[0188] To obtain a fuzzy system output for a single pattern
run, Inference is run with the following arguments:

[0189]

where model.sco is the name of the model file created by
the SCOptimizer 100. The input values input_1 and
input_ 2 specify the first and second input variables,
respectively. The user can specify input values for all
input variables of model. Inference calculates the out-
put variables and provides the output variables to the
user.

inference.exe model.sco input_1 input_2
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[0190] To simulate a fuzzy system on a large number of
input vectors, the user can use simulation from file mode as
fllows:

[0191] inference.exe model.sco in_file out_file.txt

Where model.sco is the name of the file with model
created by the SCOptimizer 100 and in_file and out_file
are the names of the input file and the output file,
respectively. The input file can be a Matlab file or a text
file.

[0192] The user can use models created with the SCOp-
timizer 100 to perform inference calculations from C++
code, using an SCLib library module.

For simple inference operations the SCLib module defines
three functions:

[0193] BOOL SCLoad(const TCHAR * name, Inferen-
ceEngine **Engine)

[0194] FloatVector SClnfer(FloatVector & in, Inferen-
ceEngine *Engine)

[0195]

[0196] The function SCLoad loads the model from a file.
The parameter “name” is a pointer to a string containing the
SCOptimizer 100 model. SCLoad returns TRUE if the load
operation is successful, and FALSE when an error occurs.
[0197] The SCInfer [unction computes the fuzzy infer-
ence. The input vector “in” is an input data vector. The
function SClnfer returns a vector containing the inference
result. In case of error, an empty vector is returned.

[0198] The function SCFree frees memory allocated by
the function SCLoad.

[0199] In one embodiment, the SCLib library includes the
following functions to support a Simulink workspace inter-
face for storing the engine pointer:

[0200] BOOL SimSCLoad(const TCHAR *name, Sim-
Struct * S);

[0201] FloatVector & SimSClnfer(FloatVector &in,
SimStruct *S);

[0202] void SimSCFree(SimStruct *S);

[0203] The functions SimSCLoad, SimSClnfer, and Sim-
SCFree provide the functionality as previously described in
connection with SCLoad, SClnfer, and SCFree, respectively,
but use a SimStruct to store the engine pointer hetween calls.

[0204] When using Matlab as a source of the training data
for the genetic algorithms in the SCOptimizer 100, the user
can use the following functions to compute the fuzzy
inference:

[0205] BOOL GAConnect(LPCTSTR param)
[0206] FloatVector & GAlnfer(FloatVector &in)
[0207]

[0208] The function GAConnect is called to establish a
connection with the SCOptimizer 100 process. The argu-
ment param is a text string passed by the SCOptimizer 100
as a parameter of the initialize session command. This
function should be called before the [first call o GAlnler( ).

void SCFree(InferenceEngine **Engine)

void GADisconnect( )
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[0209] The function GAlnfer performs the inference using
the current SCOptimizer 100 state.

[0210] The function GADisconnect frees resources asso-
ciated with the SCOptimizer 100 link. The user should call
this function once for each call to GAConnect( ). Simulink
versions of those functions are also available:

The SCOptimizer 100 supports the following fuzzy mem-
bership function shapes: exact numbers, triangular, trape-
zium, descending, ascending, normal (Gaussian), asym-
metrical normal, normal descending, and normal
descending.

[0211] The MF of exact numbers equals 1 at some value
and 0 in all other cases.

[0212] The MF of a triangular distribution equal 1 at
modal_value and linearly decreases to 0 at modal_value-
left_fuzzy and modal_value+right_fuzzy points. The trian-
gular distribution is written in the following form:

[0213] tr(modal_value; left_fuzzy:right_furzy)

[0214] The MF of the trapezium distribution equals 1 on
the interval [left_tolerantright tolerant] and linearly
decreases to 0 at the left_tolerant-left_fuzzy and right_tol-
erant+right_fuzzy points. The trapezium distribution is writ-
ten as:

[0215] tp(left_tolerant;right_tolerant; left fuzzy;right-
_fuzzy).

[0216] The MF of the descending distribution cquals 1 at
all points less than or equal to modal_value, then it linearly
decrease to 0 at modal_value+fuzzy point and remains at O
for greater values. The descending distribution is written as:

[0217] ds(modal_value;fuzzy).

[0218] The MF of the ascending distribution equals O at
points less than modal_value-fuzzy, then it linearly increase
to reach 1 at modal_value. At points greater than modal-
_value it equals 1. The Ascending distribution format is:

[0219] as(modal_value;fuzzy).

[0220] The MF of the normal distribution is changed
according to the Gaussian function: exp(-9*a-modal-
_value)*/(2*fuzzy”). The normal distribution format is:

[0221] n(modal_value;tuzzy). Asymmetrical normal

[0222] The asymmetrical normal distribution has the
shape of Gaussian a function with different scale parameters
to the left and to the right. The format for the asymmetrical
normal distribution is:

[0223] asymn(modal_value;left;right).

[0224] The MF of the descending normal distribution
equal 1 at all points less than or equal to modal_value.
Above modal_value, it has the shape of a Gaussian function.
The descending normal distribution format is:

[0225] descn(modal_value;fuzzy).

[0226] The MF of the ascending normal distribution
equals 1 at all points greater than or equal to modal_value.
Below modal_value it has the shape of a Gaussian function.
The Ascending normal distribution format is:
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[0227]

[0228] The class structure of one embodiment of the
SCOptimizer 100 library is shown in FIG. 11. The primary
base classes are InferenceTarget, RuleBase, and Linguis-
ticVariable. The LinguisticVariable class encapsulates arrays
of FMbF objects. The FMbF objects include the fuzzy
membership functions. FIG. 12 shows the objects used
during the fuzzy inference procedures.

[0229] Fuzzy inference rules are stored with the help of
the RuleBase class and its child classes CompleteRuleBase
and LBRWRuleBase. The class CompleteRuleBase encap-
sulates a complete rule database, and the LBRWRuleBase
class encapsulates the LBRW database. RuleBase objects
provide storage and access to rule data, they do not deal with
the internal structure.

[0230] The fuzzy inference algorithm, implemented in the
InferenceEngine class, detects rules, which are active for
given input and sends their numbers to the InferenceTarget
class. The InferenceTarget can be an InferenceEngine or
user-supplied class. The InferenceEngine class extracts rules
from database and perform required calculations.

[0231] The Lexical analyzer, implemented in the Lex-
Analyser class, is used to read model data, text data files and
process user input. It converts a stream of characters to a
stream of lexemes, representing words, numbers and differ-
ent separators. A TextSource class and its child classes
represent input stream for the LexAnalyser to allow the
LexAnalyser to be used to process files, memory strings and
direct user input.

[0232] Supplementary classes, representing dynamic
arrays, text strings, and others are used by other classes.

[0233] In one embodiment, the SCOptimizer 100 provides
plugin support to give the user the opportunity to add new
types of fitness function calculations, such as, for example,
experimental testing on hardware, new mathematical mod-
els, etc.

[0234] As shown in FIG. 13, the SCOptimizer 100 plugin
includes a dynamically-linked library (DI .I.). The plugin is
placed in the same directory where the SCOptimizer 100
module, scowin.exe, is located. When the SCOptimizer 100
starts, it searches its directory for plugin modules and loads
them. If a plugin is successfully loaded, then user is able to
select it as a source of optimization data in the corresponding
dialogs. Plugins also allow the user to add pages to the
SCOptimizer 100 window shown in FIG. 2.

[0235] During initialization, the SCOptimizer 100 loads
the plugin modules and calls their initialization functions.
Each plugin registers itself and creates page windows, as
required. FIG. 12 illustrates the plugin loading and regis-
tration process.

[0236] The GA-2 114 and GA-3 optimization starts when
the corresponding wizard window is displayed. The wizard
scarches the list of available plugins, determines which
plugins support the current optimization stage, and lists the
resulting plugins in the window.

[0237] When the user is finished with the wizard, the
wizard calls the optimization procedure. If a plugin is
selected as an optimization source then the plugin param-
elers are passed 1o the oplimization procedure.

[0238] As shown in FIG. 14, the optimization procedure
calls a plugin Init ( ) method. I Init( ) retums TRUE, then

ascn(modal_value;fuzzy).
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the optimization procedure proceeds with the optimization.
The GA optimization method operates with chromosomes,
each of which represents some model state (e.2., in the GA-2
114 the chromosomes represent rule database state, in the
GA-3 the chromosomes represent fitness functions of the
input variable). When the new variable is generated, the
optimization code changes the model state to one encoded in
the chromosome and calls GetFitness ( ) to calculate the
fitness value for the state. The optimization algorithm tries
to maximize the fitness value by operating on the chromo-
somes. When the optimization is finished, the model state is
set according to the chromosome with the maximum fitness
value found during optimization. The Close( ) method is
called when optimization is complete.

[0239] Plugin-dependent parameters can be entered in the
plugin page in the SCOptimizer 100 window or if the plugin
can show a dialog box during the Init( ) method.

[0240] If the current oplimization stage is not supported,
the model configuration does not match expectations, or the
device is not available, then the Init( ) procedure is typically
configured to return FALSE to abort the optimization.

[0241] Each plugin exports at least one function, SCO-
_PluginInit( ), declared as follows:

[0242] extern “C”
[0243] SCO_PluginInit(void);

[0244] The SCO_PluginInit function is called by the
SCOptimizer 100 to initialize the plugin. The plugin returns
TRUE if the initialization is successful, and FALSE if the
initialization is not successful. If FALSE is returned, then the
plugin is unloaded and not used.

declspec(dllexport) bool

[0245] TDach plugin can include at least one class, which is
a child of the OptimizationPlugin class declared in the
SCOptimizer 100 header file plugin.h. This class can include
the actual fitness calculation code. It is possible to imple-
ment different fitness calculation algorithms in different
OptimizationPlugin-derived classes and combine them in
single “.sm” plugin module.

[0246] Child classes can implement the following func-
tions and variables:

[0247]
[0248] bool Initt DWORD param);

[0249] bool
param);

[0250] wvoid Close(void);

int Stages(void);

GetFitness(FloatArray  &res, DWORD

[0251] String_name;

[0252] ‘The Stages(void) function returns a set of tlags,
which define which optimization stages are supported by the
plugin. The following constants are defined in plugin.h:

#define PL.G_GALI
#define PLG__GA2
#define PLG__GA3
#define PLG__BACKPROP

0 Bt —

Sep. 28, 2006

[0253] The constant PLG_GA2 corresponds to GA-2 114
optimization, the constant PLG_GA3 corresponds to GA-3
optimization, the constant. PLG_GAL corresponds to GA-1
112 optimization, and the constant PLG_BACKPROP cor-
responds to Error Back Propagation.

[0254] The Init(DWORD param) function is called once
before the beginning of the optimization process. The
paramcter param is a sct of flags, which control the optimi-
zation. If the optimization includes several steps (such as,
for example, sequential optimization of different outputs),
then Init( ) is called before the first stage.

[0255] The plugin can return TRUE if it is ready for
optimization and the selected mode is supported, otherwise,
the plugin can return FALSE.

[0256] The GetFitness (FloatArray &res, DWORD
param) function performs the fitness calculation. The param-
eter res is a reference to a FloatArray where the fitness
vector is to be stored. The parameter param is a set of flags
that define the optimization mode. The function returns
TRUE il the fitness calculation is successful, and FALSE il
an error occurs during fitness function calculation.

[0257] The function Close(void) is called after optimiza-
tion is completed to allow the .plugin o [ree resources, close
connections, etc.

[0258] The OptimizationPlugin class also defines the
String member variable _name, which contains the name of
the plugin (inside the class constructor). This name is
displayed during plugin selection.

[0259] 1In order for a plugin to be known by the SCOpti-
mizer plugin initialization function SCO_Plugin Init( ), the
plugin can register all available OptimizationPlugin-derived
classes using the RegisterOptimizationPlugin function as
defined in plugin.h as:

BOOL RegisterOptimizationPlugin(OptimizationPlugin
*op);
[0260] The user creates an instance of each Optimization-

Plugin and passes a pointer to the object to register the
tunction. The register tunction returns TRUE it the plugin is
successfully added to the list of plugins, and FALSE on
error.

[0261] To create a page inside the SCOptimizer 100
window, the user can call the SCController:: AddPage( )
function, declared in SCController.h as:

[0262] bool
LPCTSTR title);

[0263] The hwnd parameter of the AddPage function is a
window handle of the page to be added, title is a page title
displayed in the tab control. The AddPage [unction returns
TRUE 1if the page is successtully added to SCOptimizer 100
window, and FALSE on error.

SCController:: AddPage(ITWND  hwnd,

[0264] In order to call this function the user can, however,
have a pointer to the SCController object. A pointer to the
SCController object can be obtained by the call to static
function SCController::GetControl( ), declared in SCCon-
trollerh as:
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[0265] SCController *SCController::GetControl(void);

[0266] The SCController function returns a pointer to the
SCController object, responsible for control of main win-
dow, or NULL in case of an error (window/controller not yet
created).

[0267] The Plugin page receives a notification message
when the model configuration is changed. Such notification
messages are sent in the form of WM_UPDAITT! messages.
A plugin can process the notification messages if desired.

[0268] Appendix A and Appendix B provide one example
of an optimization plugin. Appendix A contains the header
file for the sample plugin and Appendix B contains the C++
code of the sample plugin. The sample plugin is configured
to be used with models having two inputs and one output.
The sample plugin is configured to provide an approximate
model of a function of two variables.

[0269] Although various embodiments have been
described, other embodiments will be apparent to those of
ordinary skill in the art. Thus, the present invention is
limited only by the claims following the Appendices.

APPENDIX A

// Header file, TestPlugin.h
#include “SCOWin.h” //we will need it any way
#include “plugin.h” //for OptimizationPlugin declaration
extern HINSTANCE hPluginInstance; // our module instance
// initialization procedure
oxtern “C” ___declspoc(dllexport) bool
SCO__PluginInit(void);
// dialog box message processing
BOOL CALLBACK TestDlgProc (HWND hwud, UINT message,
WPARAM wParam, LPARAM [Param)
// optimization plugin object
class TestPlugin :

public OptimizationPlugin

public:
TestPlugin(void);
~TestPlugin(void);
// return supported stages (GA-2 114 & GA-3)
int Stages(void);
// Initialize optimization
bool InittDWORD param);
// Return fitness value
bool GetFitness(FloatVector &res, DWORD param);
// Stops fitness calculations.
void Close(void);
protected:
// add variables, functions here as required
b

[0270]

APPENDIX B

// source file for TestPlugin.cpp

#include “stdafx.h” /! if the user use it

#include “TestPlugin.h” // our header file

#include “SCController.h”/* we want to add windows and

require SCController declaration */

#include “resource.h” // resource symbol file

//! Plugin dll module handle

HINSTANCE hPluginlnstance;

/1t DI, Initialization/deinitialization entry point

BOOL APIENTRY DIlIMain( HANDLE hModule,
DWORD ul__reason__for_call,
LPVOID IpReserved

)
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APPENDIX B-continued

!/ storc our handle
hPluginInstance=(IIINSTANCE)hModule;
// process messages if required

switch (ul__reason_ for_ call)

case DL, PROCESS__ATTACH:

case DLI,. THREAD_ ATTACH:

case DLL. THREAD_ DETACH:

case DLL. PROCESS_DETACH:
break;

¥
return TRUE;

/* Plugin initialization procedure called by SCOptimizer
core after plugin is loaded

*/

_ declspec(dllexport) bool SCO__PluginInit(void)

String s;
static TestPlugin plg;  // our plugin ohject
!/ Get pointer to SCController.
// Abort if it does not exist.
SCController *control=SCController::GetControl( );
if (!control)

return FALSE;
// Create page, which is modellless dialog box.
// Parent of our page are SCOptmizer window
// which handle is returned by control->hWnd( ).
// Dialog messages are processed by TestDlgProc.
HWND page;
page=CreateDialog(hPluginInstance, MAKEINTRESOURCE(ID
D_ PAGE),

control->hWnd( ),(DLGPROC)TestDlgProc);
// Load page name from text resource
s.LoadString(hPluginInstance,IDS_ TITLE);
control->AddPage(page,s);
!/ register plugin
if (1RegisterOptimizationPlugin(&plg)) return false;
// all done, return true
return true;

// dialog box message processing
BOOL CALLBACK TestDIgProc (HWND hwnd, UINT message,
WPARAM wParam, LPARAM [Param)

// Actual implementation of this fumetion is out of the
scope

// of this example.

// However be sure it will never call EndDialog( ), for
example

// by response to ESC or ENTER key. This window are
destroyed

// together with SCOptimizer main window.

// This function can process WM_UPDATE (defined as
WM__USER+1 in scowin.h).

// Those messages are send by SCController when some
model parameters are

// changed.

// class constructor
TestPlugin:: TestPlugin(void)

// Load plugin name from text resource
_ name.LoadString(hPluginInstance,IDS_ TITLE);

// Destructor

TestPlugin::~TestPlugin({vaid}

// Return supported stages. We support GA-2 114 and GA-3
int TestPlugin::Stages(void)

return PLG__GA-2 114[PLG_GA-3;

// Initialize fitness calculations
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APPENDIX B-continued
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APPENDIX B-continued

bool TestPlugin::InitDWORD param)
{
String s,s2;
// Tirst, we will check that inference engine is
available
// and model configuration fits our requirements
if(!Engine)
{

// Engine not loaded. We cann’t get there

// because this tunction is called only inside
// engine object, but just in case...

// Complain and return false.

s.LoadString(hPluginInstance, IDS_ NO__MODEL);

s2.LoadString(hPluginInstance, IDS_ TITLE);

MessageBox(NULL,s,s2,MB_ OK|MB__ ICONSTOP};

return false;
}
else
if(Engine->GetInputVarCount( )!=2 || Engine-
>GetOutputVarCount( )!=1)

// This is more likely case - number of input

// or output variables do not match ocur
expextations.

// Complain and return false.

s.LoadString(hPluginInstance,IDS__ INCONSISTENT);

s2.LoadString(hPluginInstance,IDS_ TITLE);

MessageBox(NULL,s,s2,MB__OK|MB__ICONSTOL);

return false;

/1 Allocate resources, connect and initialize
hardware there,

// read settings from window, etc..

return true;

bool TestPlugin::GetFitness(FloatVector &res, DWORD param)

{

float delta=0;
int i;
FloatVector in;// input vector for inference
FloatVector out;  // output vector
/I set vector sizes
in.SetSize(2);
out.SetSize(1);
// mark inputs as valid
in.MarkAll(true);
for(i=0;1<100;i++)
{
// set input variables
in[0]=i;
in[1]=100-i;
// perform inference
out=Enginc->Infer(in);
// Calculate difference between returned and
espected values.
// out[0] is inference output
// sin(i)*cos(100-1) is a sample function we
want to approximate
// Since Genetic Algorithm tries to maximize
fitness value
// we will use —fabs( ) as fitness. It will
reach maximum
// value of 0 when inference output equals to
our function.
delta+=—fabs(out| 0 ]-sin(i)*cos(100-1));

// normalize error

delta/=(float)i;

/] set cutput vector size to 1

res.SetSize(1);

/] SetAt( ) alsc marks element as valid, simple
/1 res[0]=delta; will not work here, or can

/] be accomplished by res.Mark(0,true);
res.SetAt(0,delta);

return true;

// Stop fitness calculations.
void TostPlugin::Close(void)

// Tree allocated resources here.
// We do not have resources to [Tee.

}

What is claimed is:
1. An optimizer, comprising:

a first dialog configured to allow a user to specify one or
more linguistic variable parameters;

a second dialog configured to allow the user to specify one
or morc membership function types;

a first genetic optimizer configured to optimize said
linguistic variable parameters for a fuzzy model in a
fuzzy inference system;

a first knowledge base trained by a use of a training signal,

a rule evaluator configured to rank rules in said first
knowledge base according to firing strength and elimi-
nating rules with a relatively low firing strength to
create a second knowledge base; and

a second genetic analyzer configured to optimize said

second knowledge base using said fuzzy model.

2. The sofl compuling optimizer of claim 1, further
comprising an optimizer configured to optimize said fuzzy
inference model using classical derivative-based optimiza-
tion.

3. The soft computing optimizer of claim 1, further
comprising a third genetic optimizer configured to optimize
a structure of said linguistic variables using said second
knowledge base.

4. The soft computing optimizer of claim 1, further
comprising a third genetic optimizer configured to optimize
a structure of membership functions in said fuzzy inference
system.

5. The soft computing optimizer of claim 1, wherein said
second genetic analyzer uses a fitness function based on
measured plant responses.

6. The soft computing optimizer of claim 1, wherein said
second genetic analyzer uses a fitness function based on
modeled plant responses.

7. The soft computing optimizer of claim 14, wherein said
second genetic analyzer uses a fitness function configured to
reduce entropy production of a controlled plant.

8. The solt compuling optimizer of claim 1, wherein said
first genetic algorithm is configured to choose a number of
membership functions for said first knowledge base.

9. The soft computing optimizer of claim 1, wherein said
first genetic algorithm is configured to choose a type of
membership functions for said first knowledge base.

10. The soft computing optimizer of claim 1, wherein said
first genetic algorithm is configured to choose parameters of
membership functions for said first knowledge base.

11. The soft computing optimizer of claim 1, wherein a
fitness function used in said second genetic algorithm
depends, at least in part, on a type of membership functions
in said [uzzy inlerence syslem.
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12. The soft computing optimizer of claim 1, further
comprising a third genetic analyzer configured to optimize
said second knowledge base according to a search space
from the parameters of said linguistic variables.

13. The soft computing optimizer of claim 1, further
comprising a third genetic analyzer configured to optimize
said second knowledge base by minimizing a fuzzy infer-
ence error.

14. The soft computing optimizer of claim 1, wherein said
second genetic optimizer uses an information-based fitness
function.

15. 'The soft computing optimizer of claim 1, wherein said
first genetic optimizer vses a first fitness function and said
second genetic optimizer uses said first fitness function.
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18. The soft computing optimizer of claim 14, wherein
said second genetic optimizer uses a fitness function con-
figured to optimize based on user preferences.

19. 'The sott computing optimizer of claim 1, wherein said
second genetic optimizer uses a nonlinear model of a
controlled plant.

20. The soft computing optimizer of claim 1, wherein said
second genetic optimizer uses a nonlinear model of an
unstable plant.

21. The soft computing optimizer of claim 1, wherein said
training signal is obtained from an optimal control signal.

22. The soft computing optimizer of claim 1, wherein said
optimal control signal is computed using a plugin module.

#* #* * #* #*



