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(57) ABSTRACT

The present invention involves a Soft Computing (SC)
optimizer for designing a Knowledge Base (KB) to be used
in a control system for controlling a plant such as, for
example, an internal combustion engine or an automobile
suspension system. The SC optimizer includes a fuzzy
inference engine based on a Fuzzy Neural Network (FNN).
The SC Optimizer provides Fuzzy Inference System (FIS)
structure selection, FIS structure optimization method selec-
tion, and teaching signal selection and generation. The user
selects a fuzzy model, including one or more of: the number
of input and/or output variables; the type of fuzzy inference
model (c.g., Mamdani, Sugeno, Tsukamoto, ctc.); and the
preliminary type of membership functions. A Genetic Algo-
rithm (GA) is used to optimize linguistic variable parameters
and the input-output training patterns. A GA is also used to
oplimize the rule base, using the [uzzy model, oplimal
linguistic variable parameters, and a teaching signal. The
GA produces a near-optimal FNN. The near-optimal FNN
can be improved using classical derivative-based optimiza-
tion procedures. The FIS structure found by the GA is
optimized with a fitness function based on a response of the
actual plant model of the controlled plant. The SC optimizer
produces a robust KB that is typically smaller that the KB
produced by prior art methods.

3 Claims, 54 Drawing Sheets
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SOFT COMPUTING OPTIMIZER OF
INTELLIGENT CONTROL SYSTEM
STRUCTURES

REFERENCE TO RELATED APPLICATIONS

This present application claims priority benefit of U.S.
Provisional Application No. 60/490,397, filed Jul. 25, 2003,
titled “SOFT COMPUTING OPTIMIZER OF INTELLI-
GENT CONTROL SYSTEM STRUCTURES,” the entire
contents of which is hereby incorporated by reference.

BACKGROUND

1. Field of the Invention

The present invention relates generally to control systems,
and more particularly to the design method of intelligent
control system structures based on soft computing optimi-
zation.

2. Description of the Related Art

Feedback control systems are widely used to maintain the
output of a dynamic system at a desired value in spite of
external disturbances that would displace it from the desired
value. For example, a household space-heating furnace,
controlled by a thermostat, is an example of a feedback
control system. The thermostat continuously measurcs the
air temperature inside the house, and when the temperature
falls below a desired minimum temperature the thermostat
turns the furnace on. When the interior temperature reaches
the desired minimum temperature, the thermostat turns the
furnace off. The thermostat-furnace system maintains the
household temperature at a substantially constant value in
spite of external disturbances such as a drop in the outside
temperature. Similar types of feedback controls are used in
many applications.

A central component in a feedback control system is a
controlled object, a machine or a process that can be defined
as a “plant”, whose output variable is to be controlled. In the
above example, the “plant” is the house, the output variable
is the interior air temperature in the house and the distur-
bance is the flow of heat (dispersion) through the walls of the
house. The plant is controlled by a control system. In the
above example, the control system is the thermostat in
combination with the furnace. The thermostat-furnace sys-
tem uses simple on-off feedback control proportional feed-
back control, integral feedback control, and derivative feed-
back control. A feedback control based on a sum of
proportional, plus integral, plus derivative feedbacks, is
often referred as a P(I)D control.

A P(DD control system is a linear control system that is
bascd on a dynamic modcl of the plant. In classical control
systems, a linear dynamic model is obtained in the form of
dynamic equations, usually ordinary differential equations.
The plant is assumed to be relatively linear, time invariant,
and stable. However, many real-world plants are lime vary-
ing, highly non-linear, and unstable. For example, the
dynamic model may contain parameters (e.g., masses,
inductance, aerodynamics coeflicients, etc.), which are
either only approximately known or depend on a changing
environment. If the parameter variation is small and the
dynamic model is stable, then the P(I)D controller may be
satisfactory. However, if the parameter variation is large or
if the dynamic model is unstable, then it is common to add
Adaptive or Intelligent (AI) control functions to the P(I)D
control system.
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2

Al control systems use an optimizer, typically a non-
linear optimizer, to program the operation of the P(I)D
controller and thereby improve the overall operation of the
control system.

Classical advanced control theory is based on the assump-
tion that all controlled “plants” can be approximated as
linear systems near equilibrium points. Unfortunately, this
assumption is rarely true in the real world. Most plants are
highly nonlinear, and often do not have simple control
algorithms. In order to meet these needs for a nonlinear
control, systems have been developed that use Soft Com-
puting (SC) concepts such Fuzzy Neural Networks (FNN),
Fuzzy Controllers (FC), and the like. By these techniques,
the control system evolves (changes) in time to adapt itself
to changes that may occur in the controlled “plant” and/or in
the operating environment.

Control systems based on SC typically use a Knowledge
Base (KB) to contain the knowledge of the FC system. The
KB typically has many rules that describe how the SC
determines control parameters during operation. Thus, the
performance of an SC controller depends on the quality of
the KB and the knowledge represented by the KB. Increas-
ing the number of rules in the KB generally increases (very
often with redundancy) the knowledge represented by the
KB but at a cost of more storage and more computational
complexity. Thus, design of a SC system typically involves
tradeotts regarding the size ot the KB, the number of rules,
the types of rules. etc. Unfortunately, the prior art methods
for selecting KI3 parameters such as the number and types of
rules are based on ad hoc procedures using intuition and
trial-and-error approaches.

SUMMARY

The present invention solves these and other problems by
providing a SC optimizer for designing a KB to be used in
a SC system such as a SC control system. In one embodi-
ment, the SC optimizer includes a fuzzy inference engine. In
one embodiment, the fuzzy inlerence engine includes a
Fuzzy Neural Network (FNN). In one embodiment, the SC
Optimizer provides Fuzzy Inference System (FIS) structure
selection, FIS structure optimization method selection, and
Teaching signal selection.

In one embodiment, the user makes the selection of fuzzy
model, including one or more of: the number of input and/or
output variables; the type of fuzzy inference model (e.g.,
Mamdani, Sugeno, Tsukamoto, etc.); and the preliminary
type of membership functions.

In one embodiment, a Genetic Algorithm (GA) is used to
optimize linguistic variable parameters and the input-output
training patterns. In one embodiment, a GA is used to
optimize the rule base, using the fuzzy model, optimal
linguistic variable parameters, and a teaching signal.

One embodiment, includes fine tuning of the I'NN. The
GA produces a near-optimal FNN. In one embodiment, the
near-optimal FNN can be improved using classical deriva-
tive-based optimization procedures.

One embodiment, includes optimization of the FIS struc-
ture by using a GA with a fitness function based on a
responsc of the actual plant model.

One embodiment, includes optimization of the FIS struc-
ture by a GA with a fitness function based on a response of
the actual plant.

The result is a specification of an FIS structure that
specifies parameters of the optimal FC according to desired
requirements.
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BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram of the general structure of a
self-organizing intelligent control system based on SC

FIG. 2 is a block diagram of the general structure of a
self-organizing intelligent control system based on SC with
a SC optimizer.

FIG. 3 shows information flow in the SC optimizer.

FIG. 4 is a flowchart of the SC optimizer.

FIG. 5 shows information levels of the teaching signal and
the linguistic variables.

FIG. 6 shows inputs for linguistic variables 1 and 2.

FIG. 7 shows outputs for linguistic variable 1.

FIG. 8 shows the activation history of the membership
functions presented in FIGS. 6 and 7.

FIG. 9 shows the activation history of the membership
functions presented in FIGS. 6 and 7.

FIG. 10 shows the activation history of the membership
functions presented in FIGS. 6 and 7.

FIG. 11 is a diagram showing rule strength versus rule
number for 15 rules

FIG. 12A shows the ordered history of the activations of
the rules, where the Y-axis corresponds to the rule index, and
the X-axis corresponds to the pattern number (t).

FIG. 12B shows the output membership functions, acti-
vated in the same points of the teaching signal, correspond-
ing to the activated rules of FIG. 12A.

FIG. 12C shows the corresponding output teaching signal.

FIG. 12D shows the relation between rule index, and the
index of the output membership [unctions it may activate.

FIG. 13A shows an example of a first complete teaching
signal variable.

FIG. 13B shows an example ol a second complete teach-
ing signal variable.

FIG. 13C shows an example of a third complete teaching
signal variable.

FIG. 13D shows an example of a first reduced teaching
signal variable.

FIG. 13E shows an example ol a second reduced teaching
signal variable.

FIG. 13F shows an example of a third reduced teaching
signal variable.

FIG. 14 is a diagram showing rule strength versus rule
number for 15 selected rules after second GA optimization.

FIG. 15 shows approximalion resulls using a reduced
teaching signal corresponding to the rules from FIG. 14.

FIG. 16 shows the complete teaching signal correspond-
ing to the rules from FIG. 14.

FIG. 17 shows embodiment with KB evaluation based on
approximation error.

FIG. 18 shows embodiment with KB evaluation based on
plant dynamics.

FIG. 19 shows optimal control signal acquisition.

FIG. 20 shows teaching signal acquisition form an opli-
mal control signal.

FIG. 21 shows the stochastic excitation as a left subplot
showing time history, and a right subplot showing the
normalized histogram.

FIG. 22 shows the free oscillations under stochastic
excitation.

FIG. 23 shows the free oscillations without excitation.

FIG. 24 shows the P(I)D control under stochastic excita-
tion.

FIG. 25 shows the P(I)D gains and control force, obtained
with P(I)D control under stochastic excitation.

FIG. 26 shows the P(I)D conltrol without excitations.
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F1G. 27 shows the P(1)D gains and control force, obtained
with P(I)D control without excitation.

FIG. 28 shows the output of plant controlled by P(I)D
controller with gains scheduled with SSCQ with minimum
of plant entropy production.

FIG. 29 shows the P(I)D gains adjusted with SSCQ with
minimum of plant entropy production, and corresponding
control force.

FIG. 30 shows the output of plant with P()D gains
adjusted with FC obtained using AFM, and as a teaching
signals the results of SSCQ with minimum ot plant entropy
production.

FIG. 31 shows the control gains and control force
obtained with AFM.

FIG. 32 shows the output of plant with P(DD gains
adjusted with FC obtained using SC optimizer, and as a
teaching signals the results of SSCQ with minimum of plant
entropy production.

FIG. 33 shows the control gains and control force
obtained with SC optimizer.

FIG. 34 shows a comparison of the control gains obtained
with SC optimizer and with AFM.

FIG. 35 shows a comparison of the plant controlled
variable obtained with SC optimizer and with AFM control-
ler.

FIG. 36 shows the plant entropy obtained with AFM
based FC and with SC optimizer based FC.

FIG. 37 shows the plant entropy production obtained with
AFM based FC and with SC optimizer based FC.

FIG. 38 shows the swing dynamic system.

FIG. 39 shows the stochastic excitation used for teaching
signal acquisition.

FIG. 40 shows the teaching signal obtained with GA and
Approximated with FNN and with SC optimizer.

FIG. 41 shows the control error obtained with different
controllers, simulation conditions are the same as was set for
teaching signal acquisition.

FIG. 42 shows the control error derivative obtained with
different controllers, simulation conditions are the same as
was set for teaching signal acquisition.

FIG. 43 shows the controlled state variable dynamics
obtained with different controllers, simulation conditions are
the same as was sct for tecaching signal acquisition.

FIG. 44 shows the intended fitness function of the control
obtained with different controllers, simulation conditions are
the same as was set for teaching signal acquisition.

FIG. 45 shows the intended [itness [unction of the control
obtained with different controllers, simulation conditions are
the same as was set for teaching signal. Comparison only
between FNN and SC optimizer based control.

FIG. 46 shows the control gains obtained with different
controllers, simulation conditions are the same as was set for
teaching signal. P(I)D was sct up to the constant gains [5 5
5].

FIG. 47 shows the stochastic excitation used for check of
the robustness of the obtained KB.

FIG. 48 shows the dillerent realization of the stochastic
excitation from the same distribution as for teaching signal.

FIG. 49 shows the controlled variable for a new excitation
signal.

FIG. 50 shows the coeflicient gains for the new excitation
signal.

FIG. 51 shows the different reference signal.

FIG. 52 shows the simulation results.

FIG. 53 shows the fitness functions.

FIG. 54 shows the coefficient gains.

FIG. 55 shows the plant and controller entropy.
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F1G. 56 shows swing motion under fuzzy control with two
P(D)D controllers. Motion along Theta-axis under Gaussian
stochastic excitation Comparison of P(I)D,FNN and SCO
control.

FIG. 57 shows Swing motion under fuzzy control with
two P(DD controllers. Motion along L-axis under non-
Gaussian (Rayleigh) stochastic excitation Comparison of
P(DD, FNN and SCO control.

FIG. 58 shows Swing motion under fuzzy control with
two P(I)D controllers, Motion along Theta-axis under Gaus-
sian stochastic excitation SCO and FNN Control law com-
parison, control along Theta-axis.

FIG. 59 shows Swing motion under fuzzy control with
two P(I)D controllers, Motion along Length-axis under
Gaussian stochastic excitation SCO and FNN Control law
comparison, Control along Length-axis.

FIG. 60 shows Swing motion under fuzzy control with
two P(DD controllers. SCO and FNN Control force (Theta-
axis and Length-axis) comparison.

FIG. 61 shows Swing motion under fuzzy control with
two P(I)D controllers, investigation of robustness, Motion
along Theta-axis under Gaussian stochastic excitation, com-
parison of P(I)D, FNN and SCO control.

FIG. 62 shows swing motion under fuzzy control with two
P(DD controllers, investigation of robustness, motion along
Length-axis under non-Gaussian (Rayleigh) stochastic exci-
tation, comparison of P(I)D, FNN and SCO control.

DETAITED DESCRIPTION

FIG. 1 shows a self-organizing control system 100 for
controlling a plant based on Soft Computing (SC). The
control system 100 includes a plant 120, a Simulation
System of Control Quality (SSCQ) 130, Fuzzy Logic Clas-
sifier System (FLCS) 140 and a P(I)D controller 150. The
SSCQ 130 includes a module 132 for calculating a fitness
function, such as, in one embodiment, entropy production
from of the plant 120, and a control signal output from the
P(D)D controller 150. The SSCQ 130 also includes a Genetic
Algorithm (GA) 131. In one embodiment, a fitness function
of the GA 131 is configured to reduce entropy production.
The FLCS 140 includes a FNN 142 to program a FC 143. An
output of the FC 143 is a coefficient gain schedule for the
P()D controller 150. The P(I)D controller 150 controls the
plant 120.

Using a set of inputs, a fitness function 132 in a GA 131
works in a manner similar to an evolutionary process to
arrive at a solution which is, hopefully, optimal. The GA 131
generates sets of “chromosomes” (that is, possible solutions)
and then sorts the chromosomes by evaluating each solution
using the fitness function 132. The fitness function 132
determines where each solution ranks on a fitness scale.
Chromosomes (solutions) which are more fit, are those
which correspond to solutions that rate high on the fitness
scale. Chromosomes which are less fit, are those which
correspond to solutions that rate low on the fitness scale.

Chromosomes that are more fit are kept (survive) and
chromosomes that are less fit are discarded (die). New
chromosomes are created to replace the discarded chromo-
somes. The new chromosomes are created by crossing
pieces of existing chromosomes and by introducing muta-
tions.

A P(D)D controller 150 has a substantially linear transfer
function and thus is based upon a linearized equation of
motion for the controlled “plant™ 120. Prior art GA used to
program P(I)D controllers typically use simple fitness func-
tions and thus do not solve the problem of poor controlla-
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6

bility typically seen in linearization models. As is the case
with most optimizers, the success or failure of the optimi-
zation often ultimately depends on the selection of the
performance (fitness) function 132.

Evaluating the motion characteristics of a nonlinear plant
is often difficult, in part due to the lack of a general analysis
method. Conventionally, when controlling a plant with non-
linear motion characteristics, it is common to find certain
equilibrium points of the plant and the motion characteristics
of the plant are linearized in a vicinity near an equilibrium
point. Control is then based on evaluating the pseudo
(linearized) motion characteristics near the equilibrium
point. This technique is scarcely, if at all, effective for plants
described by models that are unstable or dissipative.

Computation of optimal control based on SC includes the
GA 131 as the first step of global search for optimal solution
on a fixed space of positive solutions. The GA searches for
a set of control weights for the plant. Firstly the weight
vector K={k,, .. ., k,} is used by a conventional propor-
tional-integral-differential (P(I)D) controller 150 in the gen-
eration of a signal 8(K) which is applied to the plant. The
entropy S(3(K)) associated to the hehavior of the plant on
this signal is assumed as a fitness function to minimize. The
GA is repeated several times at regular time intervals in
order to produce a set of weight vectors. The vectors
generated by the GA 131 are then provided to a FNN 142
and the output of the FNN 142 to a Fuzzy Controller (FC)
143. The output of the FC 143 is a collection of gain
schedules for the P(I)D-controller 150 that controls the
plant.

FIG. 2 shows the self-organizing control system of FIG.
1, where the FLCS 140 is replaced by an FLCS 240. The
FLCS 240 includes a SC optimizer 242 configured to
program an optimal FC 243.

The SSCQ 130 finds teaching patterns (input-output
pairs) for optimal control by using the GA 131 based on a
mathematical model of controlled plant 120 and physical
criteria of minimum of entropy production rate. The FLCS
240 produces an approximation of the optimal control
produces by the SSCQ 130 by programming the optimal FC
243.

The SSCQ 130 provides acquisition of a robust teaching
signal for optimal control. The output of SSCQ 130 is the
robust teaching signal, which contains the necessary infor-
mation about the optimal behavior of the plant 120 and
corresponding behavior of the control system 200.

The SC optimizer 242 produces an approximation of the
teaching signal by building a Fuzzy Inference System (FIS).
The output of the SC optimizer 242 includes a Knowledge
Base (KB) for the optimal FC 243.

The optimal FC operates using an optimal KB from the
FC 243 including, but not limited to, the number of input-
output membership functions, the shapes and parameters of
the membership functions, and a set of optimal fuzzy rules
based on the membership functions.

In one embodiment the optimal FC 243 is obtained using
a FNN trained using a training method, such as, [or example,
the error back propagation algorithm. The error back propa-
gation algorithm is based on application of the gradient
descent method to the structure of the FNN. The error is
calculated as a difference between the desired output of the
FNN and an actual output of the FNN. Then the error is
“back propagated” through the layers of the FNN, and the
parameters of each neuron of each layer are modified
towards the direction of the minimum of the propagated
error. The back propagation algorithm has a few disadvan-
tages. First, in order to apply the back propagation approach
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it is necessary to know the complete structure of the FNN
prior to the optimization. The back propagation algorithm
can not be applied to a network with an unknown number of
layers or an unknown number nodes. Second, the back
propagation process cannot modify the types of the mem-
bership functions. Finally, the back propagation algorithm
very often finds only a local optimum close to the initial state
rather then the desired global minimum. This occurs because
the initial coefficients for the back propagation algorithm are
usually generated randomly. The error back propagation
algorithm is used, in a commercially available Adaptive
Fuzzy Modeler (AFM). The AFM permits creation of Sug-
eno 0 order FIS from digital input-output data using the error
back propagation algorithm. The algorithm of the AFM has
two steps. In the first AFM step, a user specifies the
parameters of a future FNN. Parameters include the number
of inputs and number of outputs and the number of fuzzy
sets for each input/output. Then AFM “optimizes” the rule
base, using a so-called “let the best rule win” (LBRW)
technique. During this phase, the membership functions are
fixed as uniformly distributed among the universe of dis-
course, and the AFM calculates the firing strength of the
cach rule, climinating the rules with zero firing strength, and
adjusting centers of the consequents of the rules with
nonzero firing strength. It is possible during optimization of
the rule base to specify the learning rate parameter. The
AFM also includes an option to build the rule base manually.
In this case, user can specify the centroids of the input fuzzy
sets, and then the system builds the rule base according to
the specified centroids.

In the second AFM step, the AFM builds the membership
functions. The user can specify the shape factors of the input
membership functions. Shape factor supported by the AI'M
include: Gaussian; Isosceles Triangular; and Scalene Trian-
gular. The user must also specify the type of fuzzy AND
operation in the Sugeno model, either as a product or a
minimum.

After specification of the membership function shape and
Sugeno inference method, AFM starts optimization of the
membership function shapes. The user can also specify
optional parameters to control optimization rate such as a
target error and the number of iterations.

AFM inherits the limitations and weaknesses of the back
propagation algorithm described above. The user must
specify the types of membership functions, the number of
membership functions for each linguistic variable and so on.
AFM uses rule number optimization before membership
functions optimization, and as a result, the system becomes
very often unstable during the membership function opti-
mization phase.

‘The Structure of an Intelligent Control System Including
SC-Optimizer

In FIG. 2 the SC optimizer 242 creates a FIS using the
teaching signal from the SSCQ 130. The SC optimizer 242
provides GA based FNN learning including rule extraction
and KB optimization. The SC optimizer 242 can use as a
teaching signal either an output from the SSCQ 130 and/or
output from the plant 120 (or a model of the plant 120).

In one embodiment, the SC optimizer 242 includes (as
shown in FIG. 3) a fuzzy inference engine in the form of a
FNN. The SC optimizer also allows FIS structure selection
using models, such as, for example, Sugeno FIS order 0 and
1, Mamdani FIS, Tsukamoto FIS, etc. The SC optimizer 242
also allows selection of the FIS structure optimization
method including optimization of linguistic variables, and/or
oplimization of the rule base. The SC oplimizer 242 also
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allows selection of the teaching signal source, including: the
teaching signal as a look up table of input-output patterns;
the teaching signal as a fitness function calculated as a
dynamic system response; the teaching signal as a fitness
function is calculated as a result of control of a real plant;
etc.

In one embodiment, output from the SC optimizer 242 can
be exported to other programs or systems for simulation or
actual control of a plant 130. For example, output from the
FC optimizer 242 can be exported to a simulation program
for simulation of plant dynamic responses, to an online
controller (to use in control of a real plant), etc.

The Structure of the SC Optimizer

FIG. 4 is a high-level flowchart 400 for the SC optimizer
242. By way of explanation, and not by way of limitation,
the operation of the flowchart divides operation in to four
stages, shown as Stages 1, 2, 3, 4, and 5.

In Stage 1, the user selects a fuzzy model by selecting one
or parameters such as, for cxample, the number of input and
output variables, the type of fuzzy inference model (Mam-
dani, Sugeno, Tsukamoto, etc.), and the source of the
teaching signal.

In Stage 2, a first GA (GA1) optimizes linguistic variable
parameters, using the information obtained in Stage 1 about
the general system configuration, and the input-output train-
ing patterns, obtained from the training signal as an input-
output table. In one embodiment, the teaching signal is
obtained using structure presented in FIGS. 19 and 20.

In Stage 3 precedent part of the rule base is created and
rules are ranked according to their firing strength. Rules with
high firing strength are kept, whereas weak rules with small
firing strength are eliminated.

In Stage 4, a second GA (GA2) optimizes a rule base,
using the fuzzy model obtained in Stage 1, optimal linguistic
variable parameters obtained in Stage 2, selected set of rules
obtained in Stage 3 and the teaching signal.

In Stage 5, the structure of FNN is further optimized. In
order to reach the optimal structure, the classical derivative-
based optimization procedures can be used, with a combi-
nation of initial conditions for back propagation, obtained
from previous optimization stages. The result of Stage 5 is
a specification of fuzzy inference structure that is optimal for
the plant 120. Stage 5 is optional and can be bypassed. If
Stage 5 is bypassed, then the FIS structure obtained with the
GAs of Stages 2 and 4 is used.

In one embodiment Stage 5 can be realized as a GA which
further optimizes the structure of the linguistic variables,
using set of rules obtained in the Stage 3 and 4. In this case
only parameters of the membership functions is modified in
order to reduce approximation error.

In one embodiment of Stage 4 and Stage 5, selected
components of the KB are optimized. In one embodiment, if
KB has more than one output signals, the consequent part of
the rules may be optimized independently for each output in
Stage 4. In one embodiment if KB has more than one input,
membership functions of selected inputs are optimized in
Stage 5.

In one embodiment, while Stage 4 and Stage 5 the actual
plant response in [orm of the (itness [unction can be used as
performance criteria of FIS structure while GA optimization.

In one embodiment, the SC optimizer 242 uses a GA
approach to solve optimization problems related with choos-
ing the number of membership functions, the types and
parameters of the membership functions, optimization of
fuzzy rules and refinement of KB.
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GA optimizers are often computationally expensive
because each chromosome created during genetic operations
is evaluated according to a fitness function. For example a
GA with a population size of 100 chromosomes evolved 100
generations, may require up to 10000 calculations of the
fitness function. Usually this number is smaller, since it is
possible to keep track of chromosomes and avoid re-evalu-
ation. Nevertheless, the total number of calculations is
typically much greater than the number of evaluations
required by some sophisticated classical optimization algo-
rithm. This computational complexity is a payback for the
robustness obtained when a GA is used. 'The large number of
evaluations acts as a practical constraint on applications
using a GA. This practical constraint on the GA makes it
worthwhile to develop simpler fitness functions by dividing
the extraction of the KB of the FIS into several simpler tasks,
such as: define the number and shape of membership func-
tions; select optimal rules; fix optimal rules structure; and
refine the KB structure. Each of these tasks is discussed in
more detail below. In some sense SC optimizer 242 uses
divide and conquer type of algorithm applied to the KB
optimization problem.

Definition of the Numbers and of Shapes of the Membership
Functions with GA

In one embodiment the teaching signal, representing one
or more input signals and one or more output signals, can be
presented as shown in the I'lG. 5. The teaching signal is
divided into input and output parts. Each of the parts is
divided into one or more signals. Thus, in each time point of
the teaching signal there is a correspondence between the
input and output parts, indicated as a horizontal line in FIG.
5.

Each component of the teaching signal (input or output)
is assigned to a corresponding linguistic variable, in order to
explain the signal characteristics using linguistic terms.
Each linguistic variable is described by some unknown
number of membership functions, like “Large”, “Medium”,
“Small”, etc. FIG. 5 shows various relationships between the
membership functions and their parameters.

“Vertical relations™ represent the explicitness of the lin-
guistic representation of the concrete signal, e.g. how the
membership functions is related to the concrete linguistic
variable. Increasing the number of vertical relations will
increase the number of membership [unctions, and as a
result will increase the correspondence between possible
states of the original signal, and its linguistic representation.
An infinite number of vertical relations would provide an
exact correspondence between signal and its linguistic rep-
resentation, because to each possible value of the signal
would be assigned a membership function, but in this casc
the situations as “over learning” may occur. Smaller number
of vertical relations will increase the robustness, since some
small variations of the signal will not affect much the
linguistic representation. The balance between robustness
and precision is a very important moment in design of the
intelligent systems, and usually this task is solved by Human
expert.

“Horizontal relations” represent the relationships between
different linguistic variables. Selected horizontal relations
can be used to form components of the linguistic rules.

To define the “horizontal” and “vertical” relations math-
ematically, consider a teaching signal:

[x(®),y®)],
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10
Where:
t=1, . . ., N—time stamps;
N—number of samples in the teaching signal;
X(O=(x,(1), . . ., X,,(t))—input components;

y(O=(y,(1), . . . y,(t)—output components.

Define the linguistic variables for each of the components.
A linguistic variable is usually defined as a quintuple:
(x,T(x),U,G,M), where x is the name of the variable, T(x) is
a term set of the x, that is the set of the names of the
linguistic values of x, with a fuzzy set defined in U as a
value, G is a syntax rule for the generation of the names of
the values of the x and M is a semantic rule for the
association of each value with its meaning. In the present
case, X is associated with the signal name from x or y, term
set T(x) is defined using vertical relations, U is a signal
range. In some cases one can use normalized teaching
signals, then the range of U is [0,1]. The syntax rule G in the
linguistic variable optimization can be omitted, and replaced
by indexing of the corresponding variables and their fuzzy
sets.

Semantic rule M varies depending on the structure of the
FIS, and on the choice of the fuzzy model. For the repre-
sentation of all signals in the system, it is necessary to define
m+n linguistic variables:

Let(X,Y], X=(X,, ..., X,), Y=(Y,, .. ., Y,) be the set
of the linguistic variables associated with the input and
output signals correspondingly. Then for each linguistic
variable one can define a certain number of fuzzy sets to
represent the variable:

lxl

Xi: {M‘il’ ey My },..., Xt {M‘l,(m, ...,M[;,'ﬁ};

I ly
Yy: {Mil’ ...,;4;11}, ey Yyt {y;n. ...,/.tyn"}

Where

W i=1, ., m, j=1, . L., 1, are membership functions
of the i th component of the input variable; and

p.Yz_jf, i=1,...,n,j~1,...,1; arc membership functions

i

of the i th component of the output variable.

Usually, at this stage of the definition of the KB, the
parameters of the fuzzy sets are unknown, and it may be
diflicult to judge how many membership [unctions are
necessary to describe a signal. In this case, the number of
membership functions 1,€[1, L,,,5], i=1, . . . , m can be
considered as one of the parameters for the GA (GAl)
search, where L, 15 the maximum number of membership
functions allowed. In one embodiment, 1., is specified by
the user prior to the optimization, based on considerations
such as the computational capacity of the available hardware
system.

Knowing the number of membership functions, it is
possible to introduce a constraint on the possibility of
activation of each fuzzy set, denoted as p,/.

One of the possible constraints can be introduced as:

‘T'his constraint will cluster the signal into the regions with
equal probability, which is equal to division of the signal’s
histogram into curvilinear trapezoids of the same surface
area. Supports of the fuzzy sets in this case are equal or
greater to the base of the corresponding trapezoid. How
much greater the support of the fuzzy set should be, can be
defined from an overlap parameter. For example, the overlap
parameter takes zero, when there is no overlap between two
attached trapezoids. If it is greater than zero then there is
some overlap. The areas with higher probability will have in
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this case “sharper” membership functions. 'I'hus, the overlap
parameter is another candidate for the GA1l search. The
fuzzy sets obtained in this case will have uniform possibility
of activation.

Modal values of the fuzzy sets can be selected as points
of the highest possibility, if the membership function has
unsymmetrical shape, and as a middle of the corresponding
trapezoid base in the case of symmetric shape. Thus one can
set the type of the membership functions for each signal as
a third parameter for the GAl.

The relation between the possibility of the fuzzy set and
its membership function shape can also be found. The
possibility of activation of each membership function is
calculated as follows:

: : 1 & (L.I)
Pk = Pl x = ik) = 5 D ek (a0)
1=1

Mutual possibility of activation of different membership
functions can be defined as:

J AR
= 5 20 ek Gy w sy, (xe0)]

=1

i (1.2)
PXiix = p[k‘ lXi:/Jﬁ(;vXk:ulx,( l

where * denotes selected T-norm (Fuzzy AND) operation;
=1, ..., le_, =1,..., le are indexes of the corresponding
membership functions.

In fuzzy logic literature, T-norm, denoted as * is a
two-place function from [0,1]x[0,1] to [0,1]. It represents a
fuzzy intersection operation and can be interpreted as mini-
mum operation, or algebraic product, or bounded product or
drastic product. S-conorm, denoted by +, is a two-place
function, from [0,1]x[0,1] to [0,1]. It represents a fuzzy
union operation and can be interpreted as algebraic sum, or
bounded sum and drastic sum. Typical T-norm and
S-conorm operators are presented in the Table 1.

TABLE 1
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m+n

o Tyl

m+n

m+n

Where:

Ly €[1,Laix] are genes that code the number of mem-
bership functions for cach linguistic variable X(Y,);

Oy, are genes that code the overlap intervals between the
membership functions of the corresponding linguistic vari-
able X,(Y,); and

Ty, are genes that code the types of the membership
functions for the corresponding linguistic variables.

Another approach to the fitness function calculation is
based on the Shannon information entropy. In this case
instead of the equations (1.1) and (1.2), for the fitness
function representation one can use the following informa-
tion quantity taken from the analogy with information
theory:H ;

b = —pllogply) (1.1a)
= —plx; | 3 = g oglp(e; | = )]
1, )
=~ 2 1 aloglury, ((n)]
=1
and
(1.2a)

A4y _ . .
HX‘.‘X,‘ - H(x‘ l)‘i:"g(i ’Xk:“le]
1y
= -5 2 I, o) sy, o)
=1

Tog[pe}, Gsr(0) » gy, Cae (0)]

In this case, GA1 will maximize the quantity of mutual
information (1.2a), subject to the minimum of the informa-

T-norms (fuzzy intersection) S-conorms (fuzzy union)

min(x, y) — minimum operation

xy - algebraic product X +y — xy — algebraic sum

X *y=max[0, x + y - 1] - bounded

product
xity=1 x it y=0
xxy=4qy,ifx=1 —drastic product xty=qvif x=0
0,if x,y<1 0,if x, y>0

max(x, y) — maximum opcration

X +y=min[l, x +y] — bounded sum

—drastic sum

If i=k, and j=l, then equation (1.2) defines “vertical
relations”; and if i=k, then equation (1.2) defines “horizontal
relations”. The measure of the “vertical” and of the “hori-
zontal” relations is a mutual possibility of the occurrence of
the membership functions, connected to the correspondent
relation.

The set of the linguistic variables is considered as optimal,
when the total measure of “horizontal relations” is maxi-
mized, subject to the minimum of the “vertical relations”.

Hence, one can define a fitness function for the GAl
which will optimize the number and shape of membership
functions as a maximum of the quantity, defined by equation
(1.2), with minimum of the quantity, defined by equation
(1.1).

The chromosomes of the GA1 for optimization of lin-
guistic variables according to Equations (1.1) and (1.2) have
the following structure:
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tion about each signal (1.1a). In one embodiment the com-
bination of information and probabilistic approach can also
be used.

In case of the optimization of number and shapes of
membership [unctions in Sugeno—Itype FIS, it is enough o
include into GA chromosomes only the input linguistic
variables. The detailed fitness functions for the different
types of fuzzy models will be presented in the following
sections, since it is more related with the optimization of the
structure of the rules.

Results of the membership function optimization GA1 are
shown in FIGS. 6 and 7. FIG. 6 shows results for input
variables. FIG. 7 shows results for output variables. FIGS. 8,
9, 10 show the activation history of the membership func-
tions presented in FIGS. 6 and 7. The lower graphs of FIGS.
8, 9 and 10 are original signals, normalized into the interval
[0, 1]
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Optimal Rules Selection

Rule Pre-selection Algorithm

The pre-selection algorithm selects the number of optimal
rules and their premise structure prior optimization of the
consequent part.

Consider the structure of the first fuzzy rule of the rule
base

RY5)=TF x1(r) is pj(v1) AND x,(2) is pj(x2) AND -+ AND x,(2) is

o, C5m)

{12

e a1,
THEN y, (D) is fei’ (1), y2(0) 5 jth

Where:
m is the number of inputs;
n is the number of outputs;

}, P .
(32, yulD) is bl (v,

x,(t), i=1, . . . . m are input signals;

y/t), j=1, . . ., n arc output signals;

11, are membership functions of linguistic variables;
k=1, ..., m+n are the indexes of linguistic variables;
1,=2, 3, . . . are the numbers of the membership functions

of each linguistic variable;
1, —are membership functions of output linguistic
variables, upper index;
{1} means the selection of one of the possible indexes;
and
t is a time stamp.
Consider the antecedent part of the rule:
Ry (O=IF x,(0) is p; ' (x;) AND x, (1) is p,'(x,) AND . . .
AND x,(t) is p,,'(x,,) i

The firing strength of the rule R' in the moment t is
calculated as follows:

Rl gtyminu 'Gi(@), 1" 6@, - - - s ' G(D)]

for the case of the min-max fuzzy inference. and as

Ry HO=TI[0, @1(0), 2o (200, - - -, 1 (5(0)]

for the case of product-max fuzzy inference.

In general case, here can be used any of the T-norm
operations.

The total firing strength Rg,' of the rule, the quantity
R¢, (1) can be calculated as follows:

Rl—1 RL(d
E=7) s0dt

for a continuous case, and:

1
1 1
Ry=7 § Rk
t

for a discrete case.

In a similar manner the firing strength of each s-th rule is
calculated as:

1 (1.3)

1
Ry = NIR}S (i, or Ry = =) Ry (0.
t
where
s=1,2,..., 1_[ l; is a linear rule index

N-—number of points in the teaching signal or maximum
of t in continuous case.
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In one embodiment the local firing strength of the rule can
be calculated in this case instead of integration, the maxi-
mum operation is taken in Eq. (1.3):

R} = maxR(1) 1.4
t

In this case, the total strength of all rules will be:

- Number of rules in complete rule base

Number of rules in complete rule base

Quantity R, is important since it shows in a single value
the integral characteristic of the rule base. This value can be
used as a fitness function which optimizes the shape param-
eters of the membership functions of the input linguistic
variables, and its maximum guaranties that antecedent part
of the KB describes well the mutual behavior of the input
signals. Note that this quantity coincides with the “horizon-
tal relations,” introduced in the previous section, thus it is
optimized automatically by GAL.

Alternatively, if the structure of the input membership
functions is already fixed, the quantities R, can be used for
selection of the certain number of fuzzy rules. Many hard-
ware implementations of FCs have limits that constrain, in
one embodiment, the total possible number of rules. In this
casc, knowing the hardware limit L of a certain hardware
implementation of the FC, the algorithm can select L=L, of
rules according to a descending order of the quantities R ;.°.
Rules with zero firing strength can be omitted.

It is generally advantageous to calculate the history of
membership functions activation prior to the calculation of
the rule firing strength, since the same fuzzy sets are
participating in different rules. In order to reduce the total
computational complexity, the membership function calcu-
lation is called in the moment t only if its argument x(t) is
within its support. For Gaussian-type membership functions,
sgpport can be taken as the square root of the variance value
o

An example of the rule pre-selection algorithm is shown
in the FIG. 11, where the abscissa axis is an index of the
rules, and the ordinate axis is a firing strength of the rule
R¢,*. Each point represents one rule. In this example, the KB
has 2 inputs and one output. A horizontal line shows the
threshold level. The threshold level can be selected based on
the maximum number of rules desired, based on user inputs,
based on statistical data and/or based on other consider-
ations. Rules with relatively high firing strength will be kept,
and the remaining rules are eliminated. As is shown in FIG.
11, there are rules with zero firing strength. Such rules give
no contributions to the control, but may occupy hardware
resources and increase computational complexity. Rules
with zero firing strength can be eliminated by default. In one
embodiment, the presence of the rules with zero firing
strength may indicate the explicitness of the linguistic
variables (linguistic variables contain too many membership
functions). The total number of the rules with zero firing
strength can be reduced during membership functions con-
struction of the input variables. This minimization is equal
to the minimization of the “vertical relations.”
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‘This algorithm produces an optimal configuration of the
antecedent part of the rules prior to the optimization of the
rules. Optimization of the consequential part of KB can be
applied directly to the optimal rules only, without unneces-
sary calculations of the “un-optimal rules”. This process can
also be used to define a search space for the GA (GA2),
which finds the output (consequential) part of the rule.

Optimal Selection of Consequental Part of KB with GA2
A chromosome for the GA2 which specifies the structure
of the output part of the rules can be defined as:

(ORISR LLL={L ...,

where:

I; are groups of genes which code single rule;

I, are indexes of the membership functions of the output
variables;

n is the number of outputs; and

M is the number of rules.

In one embodiment the history of the activation of the
rules can be associated with the history of the activations of
membership functions of output variables or with some
intervals of the output signal in the Sugeno fuzzy inference
case. Thus, it is possible to define which output membership
functions can possibly be activated by the certain rule. This
allows reduction of the alphabet for the indexes of the output
variable membership functions from ({1, . . ., Iy}, .

{1, ..., 15}y 1o the exact definition of the search space of

each rule

{lmlnYl, . lmaxYl}l C, {lmm.Yn, . 1ma.xY}l, R
R D T N

Thus the total search space of the GA is reduced In cases
where only one output membership function is activated by
some rule, such a rule can be defined automatically, without
GA2 optimization.

In onc embodiment in case of Sugeno 0 order FIS, instcad
of indexes of output membership functions, corresponding
intervals of the output signals can be taken as a search space.

For some combinations of the input-output pairs of the
teaching signal, the same rules and the same membership
functions are activated. Such combinations are uninteresting
from the rule optimization view point, and hence can be
removed from the teaching signal, reducing the number of
input-output pairs, and as a result total number of calcula-
tions. The total number of points in the teaching signal (t) in
this case will be equal to the number of rules plus the number
of conflicting points (points when the same inputs result in
different output values).

FIG. 12A shows the ordered history of the activations of
the rules, where the Y-axis corresponds to the rule index, and
the X-axis corresponds to the pattern number (t). FIG. 12B
shows the output membership functions, activated in the
same points of the teaching signal, corresponding to the
activated rules of FIG. 12A. Intervals when the same
indexes are activated in FIG. 12B are uninteresting for rule
optimization and can be removed. FIG. 12C shows the
corresponding output teaching signal. FIG. 12D shows the
relation between rule index, and the index of the output
membership functions it may activate. From FIG. 12D one
can obtain the intervals [1™, 1’”‘“Y]’, j=1, , N where j
is the rule index, for example if =1, I"™. *6 1’"‘”“,,l =8.

FIGS. 13A-F show plots of the teachmg signal reduction
using analysis of the possible rule configuration for three
signal variables. FIGS. 13A-C show the original signals.
FIGS. 13D-F show the results of the teaching signal reduc-
tion using the rule activation history. The number of points
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in the original signal is about 600. The number of points in
reduced teaching signal is about 40. Bifurcation points of the
signal, as shown in FIG. 12B are kept.

FIG. 14 is a diagram showing rule strength versus rule
number for 12 selected rules after GA2 optimization. FIG.
15 shows approximation results using a reduced teaching
signal corresponding to the rules from FIG. 14. FIG. 16
shows the complete teaching signal corresponding to the
rules from FIG. 14.

Fitness Evaluation in GA2

The previous section described optimization of the FIS,
without the details into the type of FIS selection. In one
embodiment, the fitness function used in the GA2 depends,
at least in part, on the type of the optimized FIS. Examples
of fitness functions for the Mamdani, Sugeno and/or Tsuka-
moto FIS models are described herein. One of ordinary skill
in the art will recognize that other fuzzy models can be used
as well.

Define error FP as a difference between the output part of
teaching signal and the FIS output as:

1
EF = Q(dp

—FGS. 8, .. ) and E= Z EP,
P

where x,¥, x,7, ..., x,? and & are values of input and output
variables in the p training pair, respectively. The function
F(x#, xf, ..., x,P) is defined according to the chosen FIS
model.

Mamdani Model

For the Mamdani model, the function F(x,?, x7, ..., %x,7)
is defined as:
(1.5)
Z l (x;) it
M X y Z
. o) = ==
Z I« (1) 7
=1 i=1 =1
where
=[] #e
i=1

and y'is the point of maximum value (called also as a central
value) of uyz(y), 11 denotes the selected 'I-norm operation.

Sugeno Model Generally

Typical rules in the Sugeno fuzzy model can be expressed
as follows:
T x, is p.(l) (%) AND x, is p.(‘) (X,) AND . . . AND x,, is
n, (x,)
THEN y=f(x,, . . ., x,),
where I=1, 2, .. . , M—the number of fuzzy rules M defined
as {number of membership functions of x, input variable} x
{number of membership functions of x, input
variable}x . . . x{number of membership functions of x,

input variable}.
The output of Sugeno FIS is calculated as follows:
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M (1.6)
I ] M)

i

[

Fxi, X2, 000, X)) =

First-Order Sugeno Model
Typical rules in the first-order Sugeno fuzzy model can be
cxpressed as follows:
IF X, is n@, (x,) AND x, is p”, (x,) AND . . . AND x,, is
n (%)
Y=F s %) Oxpap Ok

THEN . p, Px 4D,
(Output variables described by some polynomial functions.)

The output of Sugeno FIS is calculated according equation
(1.6).

Zero-Order Sugeno Model
Typical rules in the zero-order Sugeno FIS can be
expressed as follows:
IF x is u¥, (x,) AND x, is n®, (x,) AND . . . AND x,, is
“’ j,,(Xn)
THEN y:rU),

The output of zero-order Sugeno FIS is calculated as follows

(1.7

Tsukamoto Model

The typical rule in the Tsukamoto FIS is:
1F X(Zl) is u(l)jl(xl) AND x, is p(l)jz(xz) AND ... AND x,, is

e 'j,,(Xn
THEN y is ,(y).

where j, €], is the set of membership functions describing
linguistic values of x, input variable; j,el, is the set of
membership functions describing linguistic values of x,
input variable; and so on, j,.€l,, is the set of membership
functions describing linguistic values of x,, input variable;
and keO is the sel of monotonic membership functions
describing linguistic values of y output variable.

The output of the Tsukamoto FIS is calculated as follows:

M R (1.8)
Z vll_[ ;/j (x;) i
/ i ¥z
. I=1 =l ;
Flxy Xo) = — =
¥ T 4 () Z

where z' = l_[ Mlj‘. (%) and z' = p,((l)(yl)
i1

Refinement of the KB Structure with GA

Stage 4 described above generates a KB with required
robustness and performance for many practical control sys-
tem design applications. If performance of the KB generated
in Stage 4 is, [or some reasons, insullicient, then the KB
refinement algorithm of Stage 5 can be applied.

In one embodiment, the Stage 5 refinement process of the
KB structure is realized as another GA (GA3), with the
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search space trom the parameters ot the linguistic variables.

In one embodiment the chromosome of GA3 can have the

following structure:

1A LALLMV Ag[-prmf 1-prm/]; i=1,23; =12, . . ., L,
where L is the total number of the membership functions
in the system

In this case the quantities A, are modifiers of the param-
eters of the corresponding fuzzy set, and the GA3 finds these
modifiers according to the fitness function as a minimum of
the fuzzy inference error. In such an embodiment, the refined
KB has the parameters of the membership functions
obtained from the original KB parameters by adding the
modifiers prm™”,=prm,+A,.

Different fuzzy membership function can have the same
number of parameters, for example Gaussian membership
functions have two parameters, as a modal value and vari-
ance. [so-scalene triangular membership functions also have
two parameters. In this case, it is advantageous to introduce
classification of the membership functions regarding the
number of parameters, and to introduce to GA3 the possi-
bility to modify not only parameters of the membership
functions, but also the type of the membership functions,
form the same class. Classification of the fuzzy membership
functions regarding the number of parameters is presented in
the Table 2.

TABLE 2
Class
One Four
parametric Two parametric Three parametric parametric

Crisp Gaussian Non symmetric Gaussian Trapezoidal
Isosceles triangular  Triangular Bell
Descending linear

Ascending linear

Descending

Gaussian

Ascending Gaussian

GA3 improves fuzzy inference quality in terms of the
approximation error, but may cause over learning, making
the KB too sensitive to the input. In one embodiment a
fitness function for rule base optimization is used. In one
embodiment, an information-based fitness function is used.
In another embodiment the fitness function used for mem-
bership function optimization in GA1 is used. To reduce the
search space, the refinement algorithm can be applied only
to some selected parameters of the KB. In one embodiment
refinement algorithm can be applied to selected linguistic
variables only.

‘The structure realizing evaluation procedure ot GA2 or
GA3 is shown in FIG. 17. In FIG. 17, the SC optimizer
17001 sends the KB structure presented in the current
chromosome of GA2 or of GA3 to FC 17101. An input part
of the teaching signal 17102 is provided to the input of the
FC 17101. The output part of the teaching signal is provided
to the positive input of adder 17103. An output of the FC
17101 is provided to the negative input of adder 17103. The
output of adder 17103 is provided to the evaluation function
calculation block 17104. Output of evaluation function
calculation block 17104 is provided to a fitness function
input of the SC optimizer 17001, where an evaluation value
is assigned to the current chromosome.

In one embodiment evaluation function calculation block
17104 calculates approximation error as a weighted sum of
the outputs of the adder 17103.
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In one embodiment evaluation function calculation block
17104 calculates the information entropy of the normalized
approximation error.

Optimization of KB Based on Plant Response

In one embodiment of Stages 4 and 5 the fitness function
of GA can be represented as some external function Fit-
ness=f(KB), which accepts as a parameter the KB and as
output provides KB performance. In one embodiment, the
function f includes the model of an actual plant controlled
by the system with FC. In this embodiment, the plant model
in addition to plant dynamics provides for the evaluation
function.

In onc embodiment function f might be an actual plant
controlled by an adaptive P(I)D controller with coefficient
gains scheduled by FC and measurement system provides as
an output some performance index of the KB.

In one embodiment the output of the plant provides data
for calculation of the entropy production rate ot the plant and
of the control system while the plant is controlled by the FC
with the structure from the the KB.

In one embodiment, the evaluation function is not neces-
sarily related to the mechanical characteristics of the motion
of the plant (such as, for example, in one embodiment
control error) but it may reflect requirements from the other
viewpoints such as, for example, entropy produced by the
system, or harshness and or bad feelings of the operator
expressed in terms of the frequency characteristics of the
plant dynamic motion and so on.

FIG. 18 shows one embodiment the structure-realizing
KB evaluation system based on plant dynamics. In FIG. 18,
and SC optimizer 18001 provides the KB structure presented
in the current chromosome of the GA2 or of the GA3 to an
FC 18101. the FC is embedded into the KB evaluation
system based on plant dynamics 18100. The KB evaluation
system based on plant dynamics 18100 includes the FC
18101, an adaptive P(I)D controller 18102 which uses the
FC 18101 as a scheduler of the coeflicient gains, a plant
18103, a stochastic excitation generation system 18104, a
measurement system 18105, an adder 18106, and an evalu-
ation function calculation block 18107. An output of the
P()D controller 18102 is provided as a control force to the
plant 18103 and as a first input to the evaluation function
calculation block 18107. Output of the excitation generation
system 18104 is provided to the Plant 18103 to simulate an
operational environment. An output of the Plant 18103 is
provided to the measurement system 18105. An output of the
measurement system 18105 is provided to the negative input
of the adder 18106 and together with the reference input
Xref forms in adder 18106 control error which is provided
as an input to the P(1)D controller 18102 and to the FC
18101. An output of the measurement system 18105 is
provided as a second input of the evaluation function
calculation block 18107. The evaluation function calculation
block 18107 forms the evaluation function of the KB and
provides it to the fitness function input of SC optimizer
18001. Fitness function block of SC optimizer 18001 ranks
the evaluation value of the KB presented in the current
chromosome into the fitness scale according to the current
parameters of the GA2 or of the GA3.

In one embodiment, the evaluation function calculation
block 18107 forms evaluation function as a minimum of the
entropy production rate of the plant 18103 and of the P()D
controller 18102.

In one embodiment, the evaluation function calculation
block 18107 applies Fast Fourier Transtormation on one or
more outputs of the measurement system 18105, to extract
one or more frequency characteristics of the plant output for
the evaluation.
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In one embodiment, the KB evaluation system based on
plant dynamics 18100 uses a nonlinear model of the plant
18103.

In one embodiment, the KB evaluation system based on
plant dynamics 18100 is realized as an actual plant with one
or more parameters controlled by the adaptive P(I)D con-
troller 18102 with control gains scheduled by the FC 18101.

In one embodiment plant 18103 is a stable plant.

In one embodiment plant 18103 is an unstable plant.

The output of the SC optimizer 18001 is an optimal KB
18002.

Teaching Signal Acquisition

In the previous sections it was stated that the SC optimizer
242 uses as an input the teaching signal which contains the
plant response for the optimal control signal.

FIG. 19 shows optimal control signal acquisition. FIG. 19
is an embodiment ot the system presented in the FIGS. 1 and
2, where the FLCS 140 is omitted and plant 120 is controlled
by the P(I)D controller 150 with coeflicient gains scheduled
directly by the SSCQ 130.

The structure presented in FIG. 19 contains an SSCQ
19001, which contains an GA (GAO). The chromosomes in
the GAO contain the samples of cocflicient gains as {kp.kp,,
k,}". The number of samples N corresponds with the num-
ber of lines in the future teaching signal. Each chromosome
of the GAO is provided to a Buffer 19101 which schedules
the P(I)D controller 19102 embedded into the control signal
evaluation system based on plant dynamics 19100.

The control signal evaluation system based on plant
dynamics 19100 includes the buffer 19101, the adaptive
P(DD controller 19102 which uses Buffer 19101 as a sched-
uler of the coeflicient gains, the plant 19103, the stochastic
excitation generation system 19104, the measurement sys-
tem 19105, the adder 19106, and the evaluation function
calculation block 19107. Output of the P(I)D controller
19102 is provided as a control [orce (o the plant 19103 and
as a first input to the evaluation function calculation block
19107. Output of the excitation generation system 19104 is
provided to the Plant 19103 to simulate an operational
environment. An output of Plant 19103 is provided to the
measurement system 19105. An output of the measurement
system 19105 is provided to the negative input of the adder
19106 and together with the reference input Xref forms in
adder 19106 control error which is provided as an input to
P(DD controller 19102. An output of the measurement
system 19105 is provided as a second input of the evaluation
function calculation block 19107. The evaluation function
calculation block 19107 forms the evaluation function of the
control signal and provides it to the fitness function input of
the SSCQ 19001. The fitness function block ot the SSCQ
19001 ranks the evaluation value of the control signal
presented in the current chromosome into the fitness scale
according to the current parameters of the GAO.

An output of the SSCQ 19001 is the optimal control signal
19002.

In one embodiment, the teaching for the SC optimizer 242
is obtained from the optimal control signal 19002 as shown
in FIG. 20. In FIG. 20, the optimal control signal 20001 is
provided to the buffer 20101 embedded into the control
signal evaluation system based on plant dynamics 20100 and
as a first input of the multiplexer 20001. Control signal
evaluation system based on plant dynamics 20100 includes
a buffer 20101, an adaptive P(I)D controller 20102 which
uscs the buffer 20101 as a scheduler of the coeflicient gains,
a plant 20103, a stochastic excitation generation system
20104, a measurement system 20105 and an adder 20106.
On output of the P()D controller 20102 is provided as a
control force to the plant 20103. An output of the excitation
generation system 20104 is provided to the plant 20103 o
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simulate an operational environment. An output of plant
20103 is provided to the measurement system 29105. An
output of the measurement system 20105 is provided to the
negative input of the adder 20106 and together with the
reference input Xref forms in adder 20106 control error
which is provided as an input to P(I)D controller 20102. An
output of the measurement system 20105 is the optimal plant
response 20003. The optimal plant response 20003 is pro-
vided to the multiplexer 20002. The multiplexer 20002
forms the teaching signal by combining the optimal plant
response 20003 with the optimal control signal 20001. The
output of the multiplexer 20002 is the optimal tcaching
signal 20004 which is provided as an input to SC optimizer
242.

In one embodiment optimal plant response 20003 can be
transformed in a manner that provides better performance of
the [inal FIS.

In one embodiment high and/or low and/or band pass
filter is applied to the measured optimal plant response
20003 prior to optimal teaching signal 20004 formation.

In one embodiment detrending and/or differentiation and/
or integration operation is applied to the measured optimal
plant response 20003 prior to optimal teaching signal 20004
formation.

In one embodiment other operations which the person
skill of art may provide is applied to the measured optimal
plant response 20003 prior to optimal teaching signal 20004
formation.

Simulation Results

FIGS. 21 37 shows results of fuzzy control of nonlinear
dynamic system under stochastic excitation as an illustration
of the example of teaching signal approximation with the
optimal FC.

The dynamic system used for the results in FIGS. 21-37
is described by the equations of motion of a coupled
nonlinear oscillator:

2+ 2815+ il —kyx =0

Y280+ 2+”2 .._'_.2_1 D@
JH2Bay + 03y + 5y (XX + X = ulD) +£(0)

where:

u()=k,e+k &+k,[oe(tidt (e=y,.~y) is a controlling force;
and

Z(t) is a stochastic excitation.

The entropy production rate of the dynamic system is:

A5 ooy 450
dar Ot T

2B29- 3

The kinetic energy is:

The potential energy is:

5 a 1,
U = U+ Uy, U = 5ol (L= k), Uy = 5 dy,

1
2

The total energy is: T+U.
The control system’s entropy production rate is:
ds,

—= = kg’
dr ®

20

25

30

35

40

45

50

55

60

65

22
Model parameters used for simulation are:
B, 0.3
; 1.5
k 4
B2 0.3
(0% 4
1 0.5
M 3

Initial conditions are taken as:

(%=1 ¥o=0; %5=0; ¥,=0]

Stochastic excitation used for the simulations is Raleigh
noise, obtained using a stochastic filter. A time history and
the histogram of such a noise is shown in FIG. 21.

The GA parameters used in the SSCQ 130 for the simu-
lation results are: PS: 200; GN: 100; Pcr=0.9; Pmut=0.006;
and two point crossover was used. The results of the
stochastic simulations under different types of control are
presented in the FIGS. 22-37.

FIG. 21 shows the stochastic excitation as a left subplot
showing time history, and a right subplot showing the
normalized histogram.

FIG. 22 shows the free oscillations under stochastic
excilalion

FIG. 23 shows the free oscillations without excitation

FIG. 24 shows the P(I)D control under stochastic excita-
tion

FIG. 25 shows the P(I)D gains and control force, obtained
with P(I)D control under stochastic excitation

FIG. 26 shows the P(I)D control without excitations

FIG. 27 shows the P(I)D gains and control force, obtained
with P(IDD control without excitation

FIG. 28 shows the output of plant with P(DD gains
adjusted with SSCQ with minimum of plant entropy pro-
duction

FIG. 29 shows the P(I)D gains adjusted with SSCQ with
minimum of plant entropy production, and corresponding
contro] force

FIG. 30 shows the output of plant with P(DDD gains
adjusted with FC obtained using AFM, and as a teaching
signals the results of SSCQ with minimum of plant entropy
production

FIG. 31 shows the control gains and control force
obtained with AFM

FIG. 32 shows the output of plant with P(DD gains
adjusted with FC obtained using SC optimizer, and as a
teaching signals the results of SSCQ with minimum of plant
entropy production

FIG. 33 shows the control gains and control force
obtained with SC optimizer

FIG. 34 shows a comparison of the control gains obtained
with SC optimizer and with AFM

FIG. 35 shows a comparison of the plant controlled
variable obtained with the SC optimizer and with the AFM
controller

FIG. 36 shows the plant entropy obtained with AFM
based FC and with the SC optimizer based FC

FIG. 37 shows the plant entropy production obtained with
AFM based FC and with SC optimizer based FC

SC optimizer 242 in the simulation results corresponding
to FIGS. 21-C17 uses the Mamdani type fuzzy model with
4 membership functions for the first input, 4 membership
functions for the second input, 5 membership functions for
the third input, 3 membership functions for the first and
second outputs, and 6 membership functions for the third
output. The number of membership functions as, well as
their types, were obtained by genetic optimization. For the
AFM, the number of membership functions for the inputs
was specified manually (7 membership [unctions per each
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input). 'The numbers of the membership tunctions for out-
puts is simply equal to the number of rules, e.g. 51 mem-
bership functions for each output.

FIGS. 37 and 36 show that the intended fitness function
(plant entropy) with the SC optimizer-based control is
reduced better than with AT'M-based control.

Swing dynamic system simulation results, Motion under
fuzzy control with one P(I)D Controller. Comparison
between back propagation FNN and SC optimizer control
results

The previous example showed simulated control of a
stable plant. The SC optimizer 242 can also be used to
optimize a KB for an unstable object as, for in one embodi-
ment, a nonlinear swing dynamic system. The nonlinear
equations of motion of the swing dynamic system are:

] (38)
'0+2§9+ %m@: 0

. 1 :
l+2kl—192—g(:059:Z\Ikp-el-i-kd'ét“'ki'fel‘ﬂ[“'g([))

Here (1) is the given stochastic excitation (a white noise).
Equations of entropy production are the following:

ds, 220 o ds; - (39
T A T

The system (38) is a globally unstable system (in
Lyapunov sense).

In this example only the second state variable (the length
1) is controlled, and behavior of the first state variable (the
rotation angle 0) is considered only for the reference.

The fitness function for the unstable swing is configured
to minimize the entropy production rate in the plant and to
minimize the entropy production rate in the control system.
The final form of the fitness function of control in this case
is:

ds
7=, —Sc>(d7” -

dS¢ ] {40)

dr

For the simulation, initial conditions and system param-
eters were specified as shown in Table 3 below.

TABLE 3
I I 8 B, k m Rs
2 0 /4 0 1 1 1=5

FIG. 38 shows the swing system and its equations of
motion. FIG. 39 shows the excitation as a band limited white
noisc. This cxcitation was uscd for the teaching signal
acquisition. FIG. 40 shows the results of the approximation
of the teaching signal for difterent values of the control error
and for derivative of the control error. The “0” symbols in
FIG. 40 demonstrate the teaching signal. The solid line is a
result of the approximation of the signal with back propa-
gation-based FNN. The thin line in FIG. 40 is the result of
the approximation of the teaching signal with the SC opti-
mizer 242. The results of the approximation can be summa-
rized in the following Table 4:
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TABLE 4
Parameter FNN Scoptimizer
FIS type Sugeno zero order

Two inputs: control error, derivative of control
crror
Three outputs: Kp, Kp, K;

Number of inputs

Number of outputs

Number of membership [8 x 8], Manual [4 x 6], Numbers obtained
functions for inputs setling automatically

Type of membership Triangular

functions

Fuzzy And operator Product

Number of rules 64 24
Approximation error 0.01 (<0.1) 0.05 (<0.1)

(Sufficient value for
control quality is 0.1)

FIGS. 41, 42, 43, 44, 45, 46 show the simulation results.
The simulation results can be summarized as follows.
Approximation error of the FNN is smaller than approxi-
mation error of the SC optimizer, but both values are
sufficient. For the FNN, it is necessary to manually define
number of membership functions for each input variable.
The number of rules obtained with the FNN is greater than
number of rules obtained with the SC optimizer. The sto-
chastic excitation acting on the system in this case is the
same as was used for the preparation of the teaching signal
as well as a reference signal. The results are summarized in
Table 5 below

TABLE 5
P(DHD EFNN SCoptimizer
Range Deviation Range Deviation Range Deviation
‘e’ 4.025 0.57 3.503 0.5 3.513 0.54
‘de’ 6.972 0.61 7.743 0.56 7.834 0.55
‘0 2.136 0.42 2.091 0.38 2.093 0.37
o 4.025 0.57 3.503 0.5 3.513 0.54
i 8.026 0.63 8.534 0.58 8.620 0.57
“dsp’ 50.028 3.92 50.419 441 50.535 4.38
‘Sp’ 25.453 3.34 29.829 2.8 23.253 2.81
“dse’ 78.148 7.33 43.373 3.67 47.306 3.6
‘Se’ 53.396 7.04 29.899 244 21.075 2.42
o 30.231 1.8 24.313 1.45 21.374 1.28
‘Kp’ 0.000 0 2.993 0.45 2.251 0.39
Kd 0.000 0 0.960 0.16 1.016 0.08
‘Ki’ 0.000 0 3.628 0.43 3.052 0.35
(S, - 266.58 4451 16.99 1.12 18.35 1.17
S.)*
%(Sp -
80

Both the FNN controller and the SC optimizer-based
controller are better than the PI)D controller. The FNN
approximates the teaching signal with redundant accuracy,
and, as a result, better performance with the same conditions
as used for teaching signal acquisition, but control signals
are unstable near equilibrium points. The SC optimizer
control has better performance with respect to entropy
production, and control gains have simpler physical realiza-
tion. The output of the SC optimizer-based controller is
stable near equilibrium points. The KB prepared with the SC
optimizer uses 24 rules, and has almost the same perfor-
mance (according to the selected fitness function) as the
FNN based FC with 64 rules

For analysis of the robustness of the simulated FC, the
simulations were repeated with a new excitation signal,
having longer duration, and different trajectory using the
same distribution as was used for the teaching signal acqui-
sition. The excitation used in this case is shown in FIG. 47.



US 7,219,087 B2

25

'The results of the intended fitness function are shown in
FIG. 48. FIG. 48 shows that the fitness function performance
of the SC optimizer is better than the fitness function
performance of the FNN-based approach. FIG. 49 shows the
controlled state variable dynamics. The Output of the SC
optimizer in this case has a smaller deviation from the set
point. Figure SW 13 shows the coeflicient gain scheduler
dynamics. The behavior of the coeflicient gains obtained
with the SC optimizer shows smaller deviation, especially
around equilibrium points. Controller output is stable in case

26

7 (41)
1

2.
Rs() =5 +4sin(50 ]+ 0.5 sin(2r1)

The reference signal according to Equation (41) is shown
in the FIG. 51. Control results using the reference signal of

L 10 . L
of SC optimizer control. The other control parameters are FIG. 51 are shown in FIGS. 52-18 and summarized in Table
summarized in the following Table 6: 7.
TABLE 6
POD FNN SCoptimizer
Range Deviation Range Deviation Range Deviation
‘e’ 4.65 0.44 4.76 0.5 4.83 0.5
‘de’ 12.13 1.64 13.73 2.15 13.82 2.14
‘0’ 3.01 0.46 2.58 0.39 2.58 0.36
°r 8.78 2.87 8.61 2.81 8.59 2.77
4 9.68 1.43 8.38 1.37 8.44 1.23
‘dSp’ 293.81 11.16 81.55 5.14 68.97 4.19
Sp’ 410.96 111.83 380.81 105.09 307.81 84.96
“dSe’ 269.01 12.54 146.54 9 142.06 8.38
‘Se? 134637  370.21 1103.19 310.01 1046.69  293.11
‘U 65.32 8.92 40.61 8.89 42.37 7.77
“Kp’ 0.00 0 4.64 0.86 2.74 0.48
‘Kd’ 0.00 0 0.99 0.16 1.07 0.12
‘Ki* 0.00 0 3.65 0.7 3.74 0.42
(S,— So* 12483892 697498  33307.25 402285  24103.82  3709.82
*(Sp - 80
Table 6 shows that both the FNN controller and the SC
optimizer-based controller are hetter than the P(I)ID control-
ler regarding fitness function performance. Due to over *°
learning, the FNN controller becomes unstable with
unknown excitation, and asymptotically looses control
TABLE 7
P(HD FNN SCoptimizer
Range Deviation Range Deviation Range Deviation
‘e’ 4.65 0.44 476 0.5 483 0.5
‘de’ 12.13 1.64 13.73 2.15 13.82 214
o 3.01 0.46 2.58 0.39 2.58 0.36
o 8.78 2.87 8.61 2.81 8.59 277
oy 9.68 1.43 8.38 137 8.44 1.23
“dSp’ 293.81 11.16 81.55 5.14 68.97 4.19
“Sp’ 410.96 111.83 380.81 105.09 307.81 84.96
“dse’ 269.01 12.54 146.54 9 142,06 8.38
“Se’ 134637  370.21 1103.19 310.01 1046.69  293.11
‘U 65.32 8.92 40.61 8.89 4237 7.77
Kp’ 0.00 0 4.64 0.86 2.74 048
K’ 0.00 0 0.99 0.16 107 0.12
Ki’ 0.00 0 3.65 0.7 3.74 0.42
(Sp - 8" 124838.92 6974.98 33307.25 4022.85 24103.82  3709.82
*(Sp - Se)
under the intended fitness function. The SC optimizer con- ,  Table 7 shows that the FC prepared with a KB generated
trol works better under unknown conditions, thus the I'C by the SC optimizer 242 is more robust in the presence of
prepared with a KB produced by the SC optimizer 242 is reference signal variation. Thus, the SC optimizer creates a
more robust regarding variations of the excitation signal robust KB for FC and reduces the number of rules in
from the same distribution. comparison with a KB created with other approaches. The
In the following example in addition to unknown excita- 65 KB created by the SC optimizer 242 automatically has a

tion, a new reference signal in introduced as a harmonic
signal obtained by the [ollowing equation:

relatively more optimal number of rules based. The KB
created by the SC optimizer 242 tends (o be smaller and thus
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more computationally efficient. The KB created by the SC
optimizer tends to be more robust for excitation signal
variation as well as for reference signal variation.

Swing dynamic system simulation results, Motion under
fuzzy control with two P(I)D Controllers. Comparison
between back propagation FNN and SC optimizer control
results

28
In lables 10 and 11 and in FIGS. 61, 62 results of
robustness investigations are shown using the FC with the
same KB (obtained from the teaching signal for the given
above initial conditions) in the new situation, where new
initial conditions, new reference signals, new noises ampli-
tudes and new time of simulation are considered.

In one embodiment two state variables (the angle 6 and TABLE 10
the length 1) are controlled, and two types of stochastic PAD FNN SCoptimizer
excitations are used. 10
Gaussian excitation (a white noise) is acting along 6-axis, Range Deviation Range Deviation Range Deviation
and non-Gaussian (Rayleigh) excitation is acting along —
l-axis. Initial conditions: 0,—0.25, 1,-2.5, 0,—0, 1,-0.01, and f{ , }Z?gf 2'%22 - - 1.6025 2'??22
reference signals.: 6:0.4;.1:3.5. In tl}is example we see ie? 1:7658 0.0770 - - 16025 00590
Sugeno 0 FIS with four inputs and six outputs variables. 15 <o 1.4775  0.1053 _ _ 21011 0.1179
Input variables are: control error, derivative of control error “dSp° 2.3699  0.1136 — — 7.8942  0.3266
for two P(I)D Controllers (along 0 and l-axes). Output Sp’ L6819 00764 3.8506  0.1592
variables are control gains for P(DD 0 and P(I)D 1 corre- dse 6.5034 04078 - - 10.4666  0.5201
. . LN . ‘Se? 111231 1.1647 — — 111151 1.0726
spondingly. For fu;zy supulathg n this case we have o 60736 03156 B B 118522 0.5232
chosen fitness function which minimizes a control error. “Kp’ 0 0 _ _ 84882  0.7814
Tables 43, 44 and FIGS. 56, 57, 58, 59 and 60 show the Kd’ 0 0 — — 9.2615  1.5437
simulation results. Ki® 0 0 — — 2.9899  1.5492
Table 8 shows dynamic and thermodynamic characteris- (Sp— 147445 09209 - — 135519 05222
tics of swing motion along 6-axis. ff; ~
P
25 Se)
TABLE 8
PMD FNN SCoptimizer
Range Deviation Range Deviation Range Deviation
— 3p  In this case the output of FC_FNN gives unacceptable
e 0.2311 0.0368 0.2744  0.0330 0.2082 0.0271 control of the swing motion
‘de’ 0.3401 0.0615 0.6906  0.0924 0.3580 0.0576 2 :
‘9’ 0.2311 0.0368 0.2744  0.0330 0.2082 0.0271
‘0’ 0.3464  0.0619  0.6919 00924 03592  0.0577 TABLE 11
‘dSp’ 0.0272 0.0019 0.1353  0.0101 0.0361 0.0024
‘Sp’ 0.0093 0.0012 0.0444  0.0049 0.0114 0.0015 P(DD FNN_P(D)D Scoptimizer
“dSc’ 0.1593  0.0258  0.7304 00733 02297 00294 35
‘Sc’ 0.5705 0.1558 0.9173  0.2805 0.6036 0.1582 Range Deviation Range Deviation Range Deviation
‘w 1.8772 03107 3.0092 04544 30419 04139
‘Kp’ 0 0 12,7595 1.3437 47755  0.6805 ‘e’ 3.6429 01447 — — 3.5974  0.1420
‘Kd® 0 0 127159  3.2428  7.0913  1.6870 “de’ 3.7624 02177 — — 44991  0.2403
Ki’ 0 0 16,8005 22770 99998  1.5148 Nk 3.6429  0.1447 — — 3.5974  0.1420
(Sp- 0.0707  0.0087 03402 00320 00799 0.0091 49 ‘I’ 3.7631 02170 44991 0.2404
S )* ‘dSp° 19.5747  1.1262 — — 306159  1.4965
(S, - ‘Sp’ 18.9028 09256 — — 23.1497  1.1836
) ‘dSc’  97.8403  5.6594 — — 941772  4.6575
Se? 95.0564  4.6141 — — 72.0488  3.6436
‘U 36.7835  0.8077 — — 287214  1.0880
Table 9 shows dynamic and thermodynamic characteris- “Kp’ 0 0 — — 9.9998  0.5328
tics of swing motion along l-axis.
TABLE 9
POD FNN__P(I)D SCoptimizer
Range Deviation Range Deviation Range Deviation
‘e’ 2.7487 0.5118 1.9356 0.2385 21212 0.2694
‘de’ 3.5462 0.5347 5.1765 0.5602 2.9937  0.3848
iR 2.7487 0.5118 1.9356 0.2385 21212 0.2694
4§ 3.5471 0.5349 5.1770 0.5602 2.9938  0.3848
“dSp’ 11.6337 1.6373 27.5628 2.3988 9.0148  1.2071
Sp’ 17.222 2.8356 18.9126 2.6774 8.9580  1.1389
“dse’ 29.0804 4.0928 59.0850 4.6245 27.8549  3.8679
‘S¢’ 43.0811 7.0611 42,0118 6.6106 28.8407  3.6452
w 22.6100 4.1190 33.490% 4.5510 252402 4.0567
‘Kp’ 0 0 11.9993 2.0805 4.4347 0.7776
‘Kad’ 0 0 13.5328 1.6818 3.8774 0.4960
‘Ki’ 0 0 20.3707 3.1219 9.8635 1.2870
(SE - S)*  119.9456 22.1278 213.0406 18.1487 157.4477  22.3259

*(Sp - 8o
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TABLE 11-continued
P(HD FNN__P(DD Scoptimizer
Range Deviation Range Deviation Range Deviation
‘Kd’ 0 0 — — 8.6156 0.6355
‘Ki’ 0 0 — — 9.4755 0.8124
(SP - 2.9475 1669512 — — 14757  75.4050
So)*
T(Sp -
Se)

In Table 11, the FC_FNN gives unacceptable control of
the swing motion under unknown conditions. The simula-
tion results show that the FC with the KB gencrated by the
SC optimizer is more effective and robust than P(I)D and
FNN control under new conditions such as different exci-
tations, different reference signal and different initial con-
ditions.

Although the foregoing has been a description and illus-
tration of specific embodiments of the invention, various
modifications and changes can be made thereto by persons
skilled in the art, without departing [rom the scope and spirit
of the invention as defined by the claims attached hereto.
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What is claimed is:

1. A method for optimizing a knowledge base in a soft
computing controller, comprising:

selecting a fuzzy model by selecting one or more param-

eters, said one or more parameters comprising at least
one of a number of input variables, a number of output
variables, a type of fuzzy inference model, and a
teaching signal;

optimizing linguistic variable parameters of a knowledge

base according to said one or more parameters to
produce optimized linguistic variables;

ranking rules in said rule base according to firing strength;

eliminating rules with relatively weak firing strength

leaving selected rules from said rules in said rule base;
and

optimizing said selected rules, using said fuzzy model,

said linguistic variable parameters and said optimized
linguistic variables, to produce optimized selected
rules.

2. The method of claim 1, further comprising optimizing
said selected rules using a derivative-based optimization
procedure.

3. The method of claim 1, further comprising optimizing
parameters of membership functions of said optimized
selected rules to reduce approximation errors.
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